TOPICAL PAST PAPER QUESTIONS WORKBOOK

AS & A Level Mathematics (9709) Paper 5 [Probability & Statistics 1]

Exam Series: May 2015 – May 2022

Format Type A:
Answers to all questions are provided as an appendix

Appendix A

Answers

 $1.\ 9709_m22_ms_52\ Q:\ 3$

Question			Ans	wer		Marks	Guidance	
(a)						M1	At least 4 frequency densities calculated	
	Class Width	30	15	20	10	25	A1	All heights correct on graph
	Frequency Density	0.7	2	3.4	8.6	1.8	B1	Bar ends at 0.5, 30.5, 45.5, 65.5, 75.5, 100.5
								(at axis), 5 bars drawn, condone 0 in first bar $0.5 \le \text{time axis} \le 100.5$, linear scale with at least 3 values indicated.
						В1	Axes labelled: Frequency density (fd), time (t) and mins (or appropriate title). Linear fd scale, with at least 3 values indicated $0 \le fd$ axis ≤ 8.6	
							4	
(b)	66 – 75					-4	B1	Condone 65.5 – 75.5
					1	1		
(c)	Distribution i	s not symme	etrical		-	B1	Or skewed, ignore nature of skew	
					-1	7	1	

469

2. 9709_s22_ms_51 Q: 3

their scale A1 All heights correct on graph NOT FT B1 Bar ends at [0,] 20, 30, 40, 60, 90 at axis with a horizontal linear scale with at least 3 values indicated. 0 ≤ horizontal scale ≤ 90 B1 Axes labelled frequency density (fd), time (t) an initiate scale, with at least 3 values indicated 0 ≤ vertical scale, with at least 3 values indicated 0 ≤ vertical axes ≤ 92 (condone 90 used).	Question						Aı	Marks	Guidance	
Accept unsimplified, may be read from graph unitheir scale A1 All heights correct on graph NOT FT B1 Bar ends at [0,] 20, 30, 40, 60, 90 at axis with a horizontal linear scale with at least 3 values indicated. 0 ≤ horizontal scale ≤ 90 B1 Axes labelled frequency density (fd), time (f) at minutes (mins) or in a title. Linear vertical scale, with at least 3 values indicated 0 ≤ vertical axes ≤ 92 (condone 90 used).	(a)		20	10	10	20	30		M1	(Frequency ÷ class width, e.g.
B1 Bar ends at [0,] 20, 30, 40, 60, 90 at axis with a horizontal linear scale with at least 3 values indicated. 0 ≤ horizontal scale ≤ 90 B1 Axes labelled frequency density (fd), time (t) at minutes (mins) or in a title. Linear vertical scale, with at least 3 values indicated 0 ≤ vertical axes ≤ 92 (condone 90 used).			22	72	92	15	4			Accept unsimplified, may be read from graph using
Ball Ball ends at [0,] 20, 30, 40, 60, 30 at axis with a horizontal linear scale with at least 3 values indicated. 0 ≤ horizontal scale ≤ 90 B1 Axes labelled frequency density (fd), time (t) at minutes (mins) or in a title. Linear vertical scale, with at least 3 values indicated 0 ≤ vertical axes ≤ 92 (condone 90 used).		1							A1	All heights correct on graph NOT FT
minutes (mins) or in a title. Linear vertical scale, with at least 3 values indicated 0 \left\rightarrow vertical axes \left\left\rightarrow 92 (condone 90 used).									B1	horizontal linear scale with at least 3 values
0 20 20 30 40 50 60 70 80 90 Time taken (*minstes)		70 60 50 40 30	80 2	0 30	40	50 00	70		B1	Linear vertical scale, with at least 3 values indicated 0

Question	Answer	Marks	Guidance
(b)	Midpoints 10 25 35 50 75	В1	At least 4 correct midpoints seen
	$\begin{aligned} & [\text{Mean} = 31.44 \text{given}] \\ & [\text{Variance} = \frac{440 \times 10^2 + 720 \times 25^2 + 920 \times 35^2 + 300 \times 50^2 + 120 \times 75^2}{2500} - 31.44^2] \\ & = \frac{44000 + 450000 + 1127000 + 750000 + 675000}{2500} - 31.44^2 \\ & [= \frac{3046000}{2500} - 31.44^2 = 229.9264] \\ & \text{Or} \\ & \text{Variance} = \\ & \frac{440(10 - 31.44)^2 + 720(25 - 31.44)^2 + 920(35 - 31.44)^2 + 300(50 - 31.44)^2 + 120(75 - 31.44)^2}{2500} \\ & = \frac{202256 + 29860 + 11659 + 103342 + 227697}{2500} = \frac{574814}{2500} = 229.9264 \end{aligned}$	M1	Correct formula for variance or standard deviation (— mean² included with <i>their</i> midpoints (not upper bound, lower bound, class width, frequency density, frequency or cumulative frequency) and <i>their</i> \sum f if calculated. Condone 1 data error.
	Standard deviation = 15.2	A1	WWW, allow 15.16[3]
	**	3	
(c)	30–40	B1	
		1	
(d)	Stays the same, data still in same intervals	B1	Frequencies unchanged
		1	

$3.\ 9709_s22_ms_52\ Q{:}\ 1$

Question	Answer	Marks	Guidance
	$\sum x - \sum 200 = \sum (x - 200)$	В1	Forming a correct 3-term (linear) equation from $\sum x$, $\sum 200$ and $\sum (x-200)$. Accept $6846-200n=446$ OE. Condone 1 sign error.
	$\sum 200 = 200n$	B1	SOI
	[200n = 6846 - 446 = 6400] n = 32	B1	www
		3	

$4.\ 9709_s22_ms_52\ Q\hbox{:}\ 3$

Question	Answer	Marks	Guidance
(a)	Median = 0.355	В1	Identified condone Q2.
	[IQR =] 0.366 – 0.348	M1	$0.365 \leqslant UQ \leqslant 0.369 - 0.343 \leqslant LQ \leqslant 0.349$. Subtraction may be implied by answer.
	0.018	A1	If 0/3 scored SC B1 for figs Median = 355 IQR = 18.
		3	
(b)	Box-and-whisker plot on provided grid	B1	All 5 key values for <i>B</i> plotted accurately in standard format using <i>their</i> scale, Labelled <i>B</i> . Check accuracy in the middle of vertical line.
		B1 FT	All 5 key values for A , FT from part 3(a), plotted in standard format accurately using <i>their</i> scale. Labelled A . Check accuracy in the middle of vertical line.
	35 34 35 36 37 38 39 Diameter (cm ×10 ⁻²)	ві	Whiskers not through box for both, not drawn at comers of boxes, single linear scale with at least 3 values stated, covering at least 0.34 to 0.38 and labelled diameter (<i>d</i> etc) and cm. Accept as a title.
	200	3	If both plots attempted and plot(s) not labelled, SC B1 for at least 1 fully correct set of values plotted.
(c)	A comparison in context	B1	Single comment comparing spread or central tendency in context. Must reference either diameter or pipes. Not a simple numerical comparison of statistical values such as median, range, IQR or min/max.
		1	

 $5.9709_s22_ms_53$ Q: 1

Question	Answer	Marks	Guidance
(a)	Cumulative frequency (cf) graph	M1	At least 3 points plotted accurately at class upper end points (25,16) (50,44) (75,86) (100,104) (150, 132) (200, 150). Linear cf scale $0 \le cf \le 150$ and linear time scale $0 \le time(mins) \le 200$ with at least 3 values identified on each axis.
	1500	A1	All points plotted correctly, curve drawn (within tolerance) and joined to (0,0). Axes labelled cumulative frequency (cf), time (t) and minutes (min), or a suitable title.
(b)	Line from cumulative frequency = 30 to meet graph at t is between 37.5 and 42	B1 FT	Not from wrong working. Must be an increasing cumulative frequency graph.
		1	

 $6.\ 9709_s22_ms_53\ Q{:}\ 2$

Question	Answer	Marks	Guidance
(a)	$\left[\frac{123.4}{20} = \right] 6.17$	B1	Accept 6 m 17 cm, $\frac{1234}{200}$.
		1	
(b)	$\frac{10\text{th} + 11\text{th}}{2} = \frac{5.4 + 5.5}{2} = 5.45 \text{ (m)}$	B1	Accept 5 m 45 cm.
		1	
(c)	The mean is unduly influenced by an extreme value, 19.4.	B1	Comment must be within context.
	***	1	

$7.\ 9709_m21_ms_52\ Q{:}\ 5$

Question			A	nswer				Marks	Guidance
(a)							B1	Correct cumulative frequencies seen (may be by table or	
	Distance 0-4 5-10 11-20 21-30 31-40 41-60							plotted accurately on graph), condone 12 not stated.	
	Upper boundary	4.5	10.5	20.5	30.5	40.5	60.5		
	Cumulative frequency	12	28	60	126	146	150		
					-			B1	Axes labelled 'distance (or d) [in] km' from 0 to 60 and 'cumulative frequency' (or cf) from 0 to 150.
		200 money and						M1	At least 5 points plotted at upper end points for d (allow upper boundary ±0·5) with a linear scale for distance, condone 0 – 4 interval inaccurate, no scale break on axis. Not bar graph/histogram unless clear indication of upper end point only of each bar.
			b 30	35 40 Distance (los)	55 88			A1	All plotted correctly at correct upper end points (4.5 etc.) with both scales linear ($0 \le d \le 60$, $0 \le cf \le 150$), curve drawn accurately joined to (0,0), cf line>150, no daylight if >150.
								4	4.0
(b)	70% of 150 = 1	105						M1	105 seen or implied by indication on grid.
	Approx. 27							A1 FT	Strict FT <i>their</i> increasing cumulative frequency graph, use of graph must be seen. If no clear evidence of use of graph: SC B1 FT correct value from <i>their</i> increasing cumulative frequency graph.
								2	•

Question	Answer	Marks	Guidance
(c)	Midpoints: 2.25, 7.5, 15.5, 25.5, 35.5, 50.5	В1	At least 5 correct midpoints seen.
	Mean = $\frac{2.25 \times 12 + 7.5 \times 16 + 15.5 \times 32 + 25.5 \times 66 + 35.5 \times 20 + 50.5 \times 4}{150}$ $= \frac{27 + 120 + 496 + 1683 + 710 + 202}{150}$	M1	Using 6 midpoint attempts (e.g. $2 \cdot 25 \pm 0 \cdot 5$), condone one error not omission, multiplied by frequency, accept unevaluated, denominator either correct or <i>their</i> Σ frequencies.
	$\left[= \frac{3238}{150} \right] = 21.6, \ 21\frac{44}{75}$	A1	Evaluated, WWW, accept 21·5[866].
		3	

 $8.\ 9709_s21_ms_51\ Q\hbox{:}\ 5$

Question			Answer				Marks	Guidance
(a)						M1	At least 4 frequency densities calculated, accept	
	Class width	10	10	20	20	40		unsimplified. May be read from graph using <i>their</i> scale, 3SF or correct
	Frequency Density	1.6	5.4	3.9	1.6	0.5	A1	All heights correct on graph
	Frequency density						B1	Bar ends at 0, 10, 20, etc. with a horizontal linear scale with at least 3 values indicated, $0 \le \text{horizontal axis} \le 100$
	5.0	40	60	40 to0	Time/t seconds		В1	Axes labelled: Frequency density (fd), time (t) and seconds. Linear vertical scale, with at least 3 values indicated 0 vertical axis 5.4

Question	Answer	Marks	Guidance
(b)	Mean =	M1	Uses at least 4 midpoint attempts (e.g. 5 ± 0.5). Accept unsimplified expression, denominator either correct or <i>their</i> Σ frequencies
	$\left[\frac{6430}{200}\right] 32\frac{3}{20} \text{ or } 32.15$	A1	Accept 32.2
		2	
(c)	A value in correct UQ (40-60) – a value in correct LQ (10-20)	M1	
	Greatest possible value is $60 - 10 = 50$	A1	Condone 49. 9
		2	

9. 9709_s21_ms_52 Q: 7

Question						An	swer				Marks	Guidance
(a)	Inclu	ides al	ll data								B1	Reference to either including all/raw data or further statistical processes are possible that cannot be found using data from box-and-whisker, eg frequency, mean, mode or standard deviation not only median, IQR, range or spread which can be found from both.
											1	
(b)		Am	azons		Gia	nts]	B1	Correct stem can be upside down, ignore extra values
	4	2	8	17	5	4	7	9		J	В1	Correct Amazons labelled on left, leaves in order from right to left and lined up vertically (less than halfway to next column), no commas or other punctuation.
	8	6	0	19	2	3	5	5	5		В1	Correct Giants labelled on same diagram, leaves in order and lined up vertically (less than halfway to next column), no commas or other punctuation.
			5	21							B1	Correct single key for their diagram, need both teams identified and 'cm' stated at least once here or in leaf headings or title.
	Key: 1 18 2 means 181 cm for Amazons and 182 cm for Giants						nazon	s and	182 сі	n for Giants		SC for if 2 separate diagrams drawn, award SCB1 if both keys meet these criteria (Max B1, B0, B0, B1)
											4	20
(c)	(c) [UQ = 202 (cm), LQ = 182 (cm)] [IQR =] 202 – 182 = 20 (cm)										M1	$201 \le UQ \le 205 - 181 \le LQ \le 184$
	[IQR	c=j 20	J2 – 18	52 = 2	o (cm	1)					A1	www
											2	

Question	Answer	Marks	Guidance
(d)	$[\Sigma_{11} = 2132$ $\Sigma_{15} = 191.2 \times 15 = 2868$]	Bl	Both Σ_{11} and Σ_{15} found. Accept unevaluated.
	their 2868 = their 2132 + (180 + 185 + 190) + h	M1	Forming an equation for the height using their Σ_{11} and Σ_{15} .
	181 (cm)	A1	
	Alternative method for Question 7(d)		
	$\begin{bmatrix} \Sigma_{15} = 191.2 \times 15 = 2868 \\ \Sigma_{15} = 2687 + h \end{bmatrix}$	В1	Σ_{15} found using the mean and raw data methods. Accept unevaluated.
	their 2868 = their 2687 + h	M1	Forming an equation for the height using <i>their</i> Σ_{15} expressions.
	181 (cm)	A1	
	Alternative method for Question 7(d)		
	$\begin{bmatrix} \Sigma_{15} = 2687 + h \\ \frac{\Sigma_{15}}{15} = 191.2 \end{bmatrix}$	В1	Σ_{15} found using raw data method and statement on calculating new mean. Accept unevaluated.
	$\frac{their 2687 + h}{15} = 191.2$	M1	Forming an equation for the height using <i>their</i> Σ_{15} expressions
	181 (cm)	A1	
		3	N.B. All methods can be presented as a logical numerical argument which can be condoned if clear.

 $10.\ 9709_s21_ms_53\ Q:\ 1$

Question	Answer	Marks	Guidance
(a)	60	В1	Accept 60 or 61. No decimals
		1	
(b)	65% of 160 = 104	M1	0.65 \times 160 (=104) seen unsimplified or implied by use on graph
	136 (cm)	A1	Use of graph must be seen. SCB1 correct value (136 only) if neither 104 nor use of graph are evident
		2	
(c)	UQ: 150 LQ: 76	M1	$UQ - LQ$; $148 \le UQ \le 152$; $74 \le LQ \le 78$.
	IQR = 150 - 76 = 74 [cm]	A1	Must be from 150 - 76
		2	

11. 9709_s21_ms_53 Q: 3

Question	Answer	Marks	Guidance
(a)	Mean height = $\frac{\Sigma x + \Sigma y}{6 + 11} = \frac{1050 + 1991}{6 + 11} = \frac{3041}{17}$	M1	Use of appropriate formula with values substituted, accept unsimplified.
	178.9	A1	Allow 178.88, 178 15/17, 179
		2	

Question	Answer	Marks	Guidance
(b)	$\frac{\Sigma x^2 + \Sigma y^2}{6 + 11} = \frac{193700 + 366400}{6 + 11}$	М1	Use of appropriate formula with values substituted, accept unsimplified.
	$Sd^{2} = \frac{560100}{17} - their 178.88^{2} [= 948.289]$	М1	Appropriate variance formula using <i>their</i> mean ² , accept unsimplified expression.
	Standard deviation = 30.8	A1	Accept 30.7
		3	

12. 9709_w21_ms_51 Q: 2

Question	Answer	Marks	Guidance
(a)	$ \left[\frac{\sum x}{40} - k = \frac{\sum (x - k)}{40} \right] \\ \frac{40 \times 34}{40} - k = \frac{520}{40} $	M1	Forms an equation involving Σx , $\Sigma(x-k)$ and k . Accept at a numeric stage with k .
	k[=34-13]=21	A1	Evaluated.
		2	

Questi	n Answer	Marks	Guidance
(b)	$Var = \left[\frac{\sum (x-k)^2}{40} - \left(\frac{\sum (x-k)}{40}\right)^2\right] = \frac{9640}{40} - \left(\frac{520}{40}\right)^2 = [241 - 13^2 =]$	М1	Values substituted into an appropriate variance formula, accept unsimplified.
	72	A1	
		2	

$13.\ 9709_w21_ms_51\ Q{:}\ 6$

Question		Answer	Marks	Guidance			
(a)	Rebels	Sharks	B1	Correct stem, ignore extra values (not in reverse).			
	9 6 5 4 3 2 2 0 8	1 2 4 5 5 6 8 3 3 4 5 6	В1	Correct Rebels labelled on left, leaves in order from right to left and lined up vertically, no commas.			
	9 5 3 9 2 2 10 2	В1	Correct Sharks labelled on same diagram, leaves in order and lined up vertically, no commas.				
	Key: 8 7 2 means 78 kg for	Rebels and 72 kg for Sharks	B1	Correct key for their diagram, need both teams identified and 'kg' stated at least once here or in leaf headings or title.			
				SC If 2 separate diagrams drawn, SC B1 if both keys meet these criteria.			
			4				

Question	Answer	Marks	Guidance
(b)	Median = 84 (kg)	B1	
	[UQ = 93, LQ = 80] 93 – 80	M1	95 ≤ UQ ≤ 89 – 79 ≤ LQ ≤ 82
	[IQR =] 13 (kg)	A1	www
		3	
(c)	Box and whisker with end points 75 and 102	B1	Whiskers drawn to correct end points not through box, not joining at top or bottom of box.
	Median and quartiles plotted as found in (b)	B1 FT	Quartiles and median plotted as box graph.
		2	
(d)	e.g. Average weight of Rebels is higher than average weight of Sharks	Bi	Acceptable answers refer to: Range, skew, central tendency within context. E.g. range of Rebels is greater B0. Range of weights of the rebels is greater B1. Simple value comparison insufficient.
		1	

$14.\ 9709_w21_ms_52\ Q{:}\ 7$

Question	Answer	Marks	Guidance
(a)	Cumulative frequency graph drawn	B1	Axes labelled 'cumulative frequency' (or cf) from 0 to at least 140 and 'distance (or d) [in] m' from 0 to at least 1600, linear scales with at least 3 values stated.
		В1	All plotted correctly at correct upper end points (200 etc.) curve drawn accurately joined to $(0,0)$ (straight line segments B0) but no daylight above 140. Cf scale no less than $2 \text{ cm} = 20 \text{ children}$.
		2	

Question	Answer	Marks	Guidance
(b)	[UQ at 75% of 140 = 105, LQ at 25% of 140 = 35] [IQR:] 700 – 260	M1	Accept $660 \leqslant UQ \leqslant 720 - 240 \leqslant LQ \leqslant 290$. If values are outside our range, FT providing scales linear and increasing cf drawn.
	440	A1	Accept correct evaluation of $660 \le their UQ \le 720 - 240 \le their LQ \le 290$ with clear indication that graph has been used for at least one of 105 or 35.
		2	

Question	Answer	Marks				G	uidan	ce		
(c)	[Mean =] 16×100+30×250+42×400+34×700+12×1050+6×1400	B1	Frequencies	16	30	42	34	12	6	
	140		Mid-points	100	250	400	700	1050	1400	
			5 or 6 correct fi							
		B1	5 or 6 correct m	nidpo	int val	ues se	en.			
		M1	Values substituted into mean formula using <i>their</i> midpoints which must be in the class – condone 1 data error. $ \frac{1600 + 7500 + 16800 + 23800 + 12600 + 8400}{140} \text{ or } \frac{70700}{140} . $ Condone $ \frac{70770}{140} \text{ for M1}. $							
	505	A1	www							
	Variance = $\frac{16 \times 100^2 + 30 \times 250^2 + 42 \times 400^2 + 34 \times 700^2 + 12 \times 1050^2 + 6 \times 1400^2}{140}$ -505^2	M1	Values substitut midpoints and a unsimplified. C Accept: [160 000 + 187: [160 000]] or \frac{50 405 000}{140} \text{ or formula state}	their 1 Condo: 5 000 or 360	requence 1 de + 6 72	ncies (ata err 0 000 7143] –	include or. $+16.66$ 140 $-\left[505^{2}\right]$	ling for 60 000 +	denomi -13 230 025]	
	$S.d. = \left[\sqrt{105010.7}\right] = 324$	A1	www					1		
		6		×						

15. 9709_w21_ms_53 Q: 2

Question	Answer									Marks	Guidance		
(a)	Lak	eview	,				Rive	rside			_	B1	Correct stem, ignore extra values.
	8 7	4 6	2	2	1	8	3	4	5	5	12	B1	Correct Lakeview labelled on left, leaves in order from right to left and lined up vertically, no commas.
	3	2	0	3 4	0	6	7			_	O.	В1	Correct Riverside labelled on same diagram, leaves in order and lined up vertically, no commas.
	Key: 6 2 3 means 26m for Lakeview and 23m for Riverside									В1	Correct key for their diagram, need both teams identified and 'm' stated at least once here or in leaf headings or title. SC If 2 separate diagrams drawn: SC B1 if both keys meet these criteria.		
				1		V						4	
(b)	UQ = 32, LQ = 19									M1	(30 ≤ UQ ≤ 33) – (14 ≤ LQ ≤ 22)		
	IQR = 32 - 19 = 13									A1	www		
	••		V			/						2	

 $16.\ 9709_w21_ms_53\ Q\hbox{:}\ 3$

Question	Answer	Marks	Guidance
(a)	Cw: 5 5 10 10 20	М1	At least 4 frequency densities calculated (f/cw), accept unsimplified and class widths ± 1 of true values. May be implied by graph.
	Fd: 4.6 20.4 13.5 7.6 1.2	A1	All heights correct on graph NOT FT
	Frequency density	B1	Bar ends at 0, 5, 10, 20, 30, 50 clear intention not to draw at 4.5 or 5.5 etc.
	20 25 20 25 30 35 40 45 50 Time, trainden	В1	Axes labelled: Frequency density (fd), time (t) and mins (or appropriate title). Linear scales between 0 and 20.4 or above on vertical axis, and 0 and 50 or above on the horizontal axis. (Axes may be reversed.)
		4	4.0
(b)	2.5×23+7.5×102+15×135+25×76+40×24 360	M1	Uses at least 4 midpoint attempts (e.g. 2.5 ± 0.5) in correct formula, accept unsimplified expression, denominator either correct or <i>their</i> Σ frequencies.
	$\left[\frac{5707.5}{360}\right] = 15.9, 15\frac{41}{48}$	A1 2	Evaluated.
	Palpaca		

17. 9709_m20_ms_52 Q: 7

Question	Answer	Marks	Guidance
(a)	15, 63, 129, 150	B1	Correct cumulative frequencies seen (may be on graph)
	150	В1	0 ≤ Horizontal axis ≤ 30, 0 ≤ vertical axis ≤ 150 Labels correct: length cm, cf
	130	M1	At least 3 points plotted at upper end points (e.g. allow 9, 9.5, 10) with a linear horizontal scale.
	110 2100 2100 2100 200 200 200 200 200 2	Al	Linear vertical scale, all points at correct upper end points (9.5 etc.), curve drawn accurately, joined to (0,0) (condone (-0.5, 0))
		4	
(b)	60% of 150 = 90	М1	90 seen or implied by use on graph
	Approx. 16.5 [cm]	A1FT	FT their increasing cumulative frequency graph, Use of graph must be seen.
			If no clear evidence of use of graph SCB1FT correct value from <i>their</i> graph
		2	

Question	Answer	Marks	Guidance
(c)	Midpoints: 4.75, 12, 17, 25	M1	At least 3 correct midpoints used (39449.4375 implies M1)
	$Var = \frac{4.75^2 \times 15 + 12^2 \times 48 + 17^2 \times 66 + 25^2 \times 21}{150} - 15.295^2$	M1	Using midpoints ± 0.5 in correct var formula, including subtraction of their μ^2 .
	= 29.1	A1	
		3	

 $18.\ 9709_s20_ms_51\ Q{:}\ 7$

Question	Answer	Marks
(a)	Class widths: 10, 5, 15, 20, 10	M1
	Frequency density = frequency/their class width: 1.8, 4.8, 2, 1, 0.8	M1
	All heights correct on diagram (using a linear scale)	A1
	Correct bar ends	B1
	Bar ends: 10.5, 15.5, 30.5, 50.5, 60.5	B1
		5
(b)	11 – 15 and 31 – 50	B1
	Greatest IQR = 50 – 11 = 39	B1
		2
(c)	Mean = $\frac{18 \times 5.5 + 24 \times 13 + 30 \times 23 + 20 \times 40.5 + 8 \times 55.5}{100} = \frac{2355}{100} = 23.6$	B1
	$Var = \frac{18 \times 5.5^2 + 24 \times 13^2 + 30 \times 23^2 + 20 \times 40.5^2 + 8 \times 55.5^2}{100} - mean^2$	M1
	$\frac{77917.5}{100} - \text{mean}^2 = 224.57$	A1
	Standard deviation = 15.0 (FT their variance)	A1 FT
		4

 $19.\ 9709_s20_ms_52\ Q\!\!: 1$

Question	Answer	Marks
	$\sum x - 50n = 144$	B1
	50n + 144 = 944	M1
	n=16	A1
		3

20. 9709_s20_ms_52 Q: 3

Question			Answer	Marks
(a)	Median = 0.238			B1
	UQ = 0.245, LQ = 0.23 So IQR = 0.245 - 0.231	i,		М1
	0.014	2		A1
				3

Question	Ans	wer						Marl
(b)			LQ	M	UQ			
	A	0.220	0.231 FT	0.238 FT	0.245 FT	0.254		
	В	0.211	0.224	0.232	0.243	0.256		
	Med	lians and	quartiles co	orrectly plot	ted for A or	В		
	End	points co	orrect for A	or B				
	Con	npletely c	correct, incl	uding scale				
(c)				d by machin entral tende	ne A are long	ger.		
			ods produce parison of sp		ne A are less	spread ou	t	

$21.\ 9709_s20_ms_53\ Q:\ 6$

Question		Answer	Marks				
(a)	A	В					
	2	6					
	5 2 0 3	0 1 5 8					
	9 7 2 1 1 4	1 2 2 7 9					
	3 2 5	2					
	4 6						
	KEY 1 4 2 means \$41 000 for A	and \$42 000 for B					
	Correct stem						
	Correct A on LHS	-0	В1				
	Correct B on same diagram		B1				
	Correct key for their diagram, bot	a companies identified and correct units	B1				
			4				
(b)	Median = [\$]42 000		B1				
	LQ = [\$]35 000 UQ = [\$]52 000		B1				
	IQR = [\$]17 000 (FT if 49000 ≤ UQ ≤ 53000 – 32	000 ≤ LQ ≤ 41000)	B1 FT				
			3				

Question	Answer	Marks		
(c)	Sum of given 11 numbers is 433 000	M1		
	Sum of 12 numbers, including new = $38500 \times 12 = 462000$			
	Difference = new salary = [\$]29 000			
		3		

 $22.\ 9709_w20_ms_51\ Q{:}\ 6$

Question	Answer	Marks	Guidance
(a)	330 340 130 130 130 130 100 100 100 10	MI	At least 4 points plotted at upper end points, with both scales linear with at least 3 values indicated
	Correct cumulative frequency curve	A1	All plotted correctly with curve drawn joined to (0, 0), axes labelled cumulative frequency, time, minutes
		2	
(b)	$150 \times 0.76 = 114$	M1	114 SOI, may be on graph
	k = 45 (mins)	A1 FT	Clear indication that their graph has been used, tolerance ±1mm
		2	

Question	Answer	Marks	Guidance
(c)	Frequencies: 12 36 58 28 16	B1	Correct frequencies seen
	Mean = $\frac{10 \times 12 + 25 \times 36 + 35 \times 58 + 50 \times 28 + 80 \times 16}{150}$	B1	At least 4 correct midpoints seen and used
	120+900+2030+1400+1280 150	M1	Correct formula with <i>their</i> midpoints (not upper boundary, lower boundary, class width or frequency density).
	$38.2, 38\frac{1}{5}$	A1	
	Variance = $\frac{12 \times 10^2 + 36 \times 25^2 + 58 \times 35^2 + 28 \times 50^2 + 16 \times 80^2}{150} - mean^2$ $= \frac{1200 + 22500 + 71050 + 70000 + 102400}{150} - mean^2$	M1	Substitute <i>their</i> midpoints and frequencies (condone use of cumulative frequency) in correct variance formula, must have '– <i>their</i> mean ² '
	(Standard deviation = $\sqrt{321.76}$) = 17.9	A1	
		6	

23. $9709_{w20_{ms}_{52}}$ Q: 5

Question			Answer	Marks	Guidance
(a)	Dados		Linva	B1	Correct stem can be upside down, ignore extra values
	8 6 6 5 2 0 0	0		В1	Correct Dados labelled, leaves in order and lined up vertically (less than midway to next column), no commas etc, no extra terms
	8 2	2	2 6	B1	Correct Linva on opposite side of stem labelled, leaves in order and lined up vertically (less than midway to next column), no commas etc, no extra terms
	2	4	0	В1	Correct single key for their diagram, need both resorts identified and 'cm' stated at least once here or in leaf headings or title.
	KEY 6 3 2 means 36 cm (snow) in Dados and 32 cm (snow) in Linva				SC If 2 separate diagrams drawn, SCB1 if both keys meet these criteria B0B1B0SCB1 max.
				4	
(b)	Median or Q2 = 15 (cm	1)		B1	Correct
	UQ or Q3 = 28 cm, LQ or Q1 = 10 cm IQR = 28 – 10				22 ≤ UQ ≤ 36 − 8 ≤ LQ ≤ 10
	18 (cm)			A1	www
				3	
(c)	On average the snowfall in Davos is higher				FT from <i>their</i> 5(b) values for Dados. Statement comparing central tendency in context
	The amount of snowfall	1 in	Linva varies more than in Davos	B1 FT	Statement comparing spread in context Note: simply stating and comparing the values is not sufficient.
				2	

$24.\ 9709_w20_ms_53\ Q\hbox{:}\ 7$

Question	Answer	Marks	Guidance
(a)	Class widths: 5, 5, 10, 20, 30 Frequency density: 2, 1, 2.6, 1.6, 0.6	M1	At least 3 class widths correct and used in a calculation
		M1	At least 3 correct frequency densities unsimplified – FT their class widths
		A1	All correct heights on a histogram using a linear vertical scale from zero – no FT
	Descript A	B1	Correct upper bar ends (5.5, 10.5, 20.5, 40.5, 70.5) and 4 correct lower bar ends of 5.5, 10.5, 20.5, 40.5. Condone 0 or 1.
	2.5 2.0 2.0 1.5 1.0 0.5 1.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0	В1	Linear scales with at least 3 values indicated on each axis, vertical scale from 0, axes labelled 'fd' and 'no. of (incorrect) notes', or better.
		5	
(b)	LQ: 11 – 20 UQ: 21 – 40	B1	Both UQ and LQ correct
	Greatest IQR = 40 - 11 = 29	B1 FT	Subtract lower end of <i>their</i> LQ interval from upper end of <i>their</i> UQ interval
		2	

Question	Answer	Marks	Guidance
(c)	Midpoints: 3 8 15.5 30.5 55.5	M1	At least 4 midpoints correct and used
	Mean = $\frac{3\times10 + 8\times5 + 15.5\times26 + 30.5\times32 + 55.5\times18}{91}$ = $\frac{30 + 40 + 403 + 976 + 999}{91}$ = $\frac{2448}{91}$	M1	Correct formula with <i>their</i> midpoints (not upper boundary, lower boundary, class width, frequency density, frequency or cumulative frequency)
	$26.9, \ 26\frac{82}{91}$	A1	Accept 26 or 27
		3	

25. 9709_m19_ms_62 Q: 2

(i)	- 2		
	$\sigma^{2} = \frac{\sum (x - c)^{2}}{n} - \left(\frac{\sum (x - c)}{n}\right)^{2}$ $3.2^{2} = \frac{3099.2}{40} - \left(\frac{\sum (x - c)}{40}\right)^{2}$	М1	Use correct formula with values substituted
	$\left(\frac{\sum (x-c)}{40}\right)^2 = 67.24 :$ \(\sum \sum (x-c) = 40 \times \sqrt{67.24}\)	M1	Rearrange to make <i>their</i> $\left(\frac{\sum (x-c)}{40}\right)^2$ the subject, unsimplified.
	= 328	A1	Exact value, cao
		3	
	$\sum x - 40c = their (i)$ $Mean = \frac{their (i)}{40} + 50$ $= 58.2$	BIFT	FT their (I)

26. 9709_m19_ms_62 Q: 5

Question	Answer	Marks	Guidance
(i)	Dolphins Sharks	B1	Correct stem can be upside down, ignore extra values,
	5 9	B1	Correct Dolphin must be on LHS,
	9 5 5 3 2 6 4 6 8	B1	Correct Sharks on either LHS or RHS of back-to-back. Alignment ± half a space, no late entries squeezed in, no crossing out if shape is changed. Condone a separate RHS stem-and-leaf diagram
	2 2 0 8 0 4 Key: 3 6 4 means 63 kg for Dolphins and 64 kg for Sharks	B1FT	Correct single key for <i>their</i> single diagram, need both teams identified and 'kg' stated at least once here or in leaf headings or title.
		4	
(ii)	Median = 72 LQ = 65, UQ = 80,	B1	72 <uq<82 -="" 62<lq<72<="" td=""></uq<82>
	IQR = 80 - 65	M1	nfww
	= 15	A1	SCB1 if M0 scored for LQ = 65 and UQ = 80
		3	

27. 9709_s19_ms_61 Q: 1

Question	Answer	Marks	Guidance
(i)	$\Sigma(t-120) = -25 + 6 - 3 + 15 + 0 + 5 - 6 - 1 + 16 = 7$	M1	Attempt to sum both $(t-120)$ and $(t-120)^2$ Correct ans using $\Sigma t - 9 \times 120$ and $\Sigma (t-120)^2$ M1A1
	$\Sigma(t - 120)^2 = 25^2 + 6^2 + 3^2 + 15^2 + 0^2 + 5^2 + 6^2 + 1^2 + 16^2$ = 1213	A1	Both correct, www, SC correct ans no working B1B1
		2	
(ii)	$Var = \frac{\Sigma (t - 120)^2}{9} - \left(\frac{\Sigma (t - 120)}{9}\right)^2 = \frac{their 1213}{9} - \left(\frac{their 7}{9}\right)^2$	M1	Using two coded values in correct formula including finding Σt from 7 etc
	= 134(.2)	A1	Correct answer SC if correct variance obtained by another method from raw data give SCB1
		2	

28. 9709_s19_ms_61 Q: 4

Question	Answer	Marks	Guidance
	Median Maths = 40	M1	Indication of finding medians, such as mark on graph or reference marks to 700 pupils, condone poor terminology such as 'mean'
	Median English = 55	A1	Both values correct, condone 54 <english<56 54,="" 56="" a0<="" but="" get="" th=""></english<56>
	Median of English is larger than median of Maths	В1	Correct statement, median must be referenced within answer. No credit if statement references 'means'
	Range Maths is 100 or IQ range Maths = 80 – 12 = 68	M1	Evidence of finding either both ranges or both IQ ranges i.e. see a minus
	Range English is 60 or IQ range English = 62 – 42 = 20	A1	Both ranges or IQR correct
	Maths marks have more spread then English marks	B1	Correct conclusion. Accept standard deviation but must see some figures
		6	

29. 9709_s19_ms_62 Q: 6

Question	Answer	Marks	Guidance
(i)	Advantage: comment referring to spread or range or shape	В1	Comments referring to quartiles, IQR, Range, median, shape, skewness, data distribution, spread score B1 Any comments with reference to mean or standard deviation or any other 'disadvantage' will score B0 Comments referring to '5-value plot', comparison with another data set, overview or ease of drawing/plotting/reading require an appropriate advantage statement.
	Disadvantage: comment referring to limited data information provided	В1	Comments referring to no individual data, no information about the number of values, unable to calculate mean, standard deviation, variance and mode score B1 Any comments with reference to median, shape or any other 'advantage' will score B0 Comments referring to 'size of data set' or 'average' require an appropriate disadvantage statement. Comments referring to outliers are ignored in all cases (as outliers are not in the syllabus content) unless supported by an appropriate advantage / disadvantage statement. If comments not clearly identified, assume first comment is the advantage.
		2	

Question	Answer	Marks	Guidance
(ii)	Not mean as data skewed by one large value	B1	Comment which identifies 768 (or 'a very large number') as the problem. Condone the use of 'outlier'
	Not mode as frequencies all the same	B1	Comment which indicates that no mode exists (e.g. all the data is different, there is no repeated number, all the values are different)
	Median	B1	Median identified as choice, dependent upon statements for mean and mode being given, even if incorrect or very general.
	SC: Mean is identified as most suitable		
	Not mode as frequencies all the same	SCB1	Comment which indicates that no mode exists
	Not median as not all values used	SCB1	Comment which indicates limitation of median e.g. median is not in middle of range.
		3	
(iii)(a)	LQ = 256 or 256.5 Med = 280 UQ = 329 Min 190 max 375	B1	Median, UQ and LQ values seen, may not be identified or identified correctly. (Not read from box plot unless value stated)
		B1	FT Median and quartiles plotted in box on graph, linear scale
	150 200 250 300 350 400 time minutes	B1	Correct end points, whiskers from ends of box but not through box, not at top or bottom of box
		B1	Uniform scale from 190 to 375 (need at least 3 linear identified points min) and labelled 'time' and 'minutes' (can be in title)
			No time axis or time axis with no scale attempt, Max B1B0B0B0
		4	
Question	Answer	Marks	Guidance
(iii)(b)	IQR = their 329 – their 256 = 73 or 72.5	B1	FT Must follow through only from <i>their</i> stated values (condone if correct quartiles stated here), not reading from graph.
		1	

$30.\ 9709_s19_ms_63\ Q{:}\ 7$

		_	
Question	Answer	Marks	Guidance
(i)	Thaters School Whitefay Park School	B1	Correct stem can be upside down, ignore extra values,
	8 3 8 3 4 5 7 8 8 7 6 4 2 5 3 6 6 6 2 1 6 1 4 6 9	B1	Correct Thaters School labelled on left, leaves in order from right to left and lined up vertically, no commas
	6 2 1 6 1 4 6 9 5 7 3 5 8	B1	Correct Whitefay Park School labelled on same diagram on right hand side in order from left to right and lined up vertically, no commas
	Key 8 4 5 represents 48 minutes for Thaters School and 45 minutes for Whitefay Park School.	B1	FT Correct key for <i>their</i> diagram, need both teams identified and 'minutes' stated at least once here or in leaf headings or title.
	**		SC If 2 separate diagrams drawn, SCB1 if both keys meet these criteria
		4	
(ii)	LQ = 50 UQ = 61.5	B1	Both quartiles correct
	IQ range = 61.5 – 50 = 11.5	B1	FT $61 \le UQ \le 62 - 48 \le LQ \le 52$
		2	
(iii)	$\Sigma(x-60)^2 = (-15)^2 + (-13)^2 + (-7)^2 + (-4)^2 + (-4)^2 + 1^2 + 4^2 + 6^2 + 9^2 + 13^2 + 23^2 + 15^2 + 18^2$	M1	Summing squares with at least 5 correct unsimplified terms
	= 1856	A1	Exact value
		2	

Question	Answer	Marks	Guidance
(iv)	Var = mean of coded squares – (coded mean) ² $= \frac{\Sigma(x-60)^2}{13} - \left(\frac{\Sigma(x-60)}{13}\right)^2$ Var = $\frac{their 1856}{13} - \left(\frac{46}{13}\right)^2$ $= 130$	M1	Using two coded values in correct formula (variance or sd) Correct answer SC if correct variance obtained by another method give SCB1
	130	2	

$31.\ 9709_w19_ms_61\ Q:\ 3$

Question	Answer	Marks	Guidance
(i)	$\sum x = 60 \times 20 \qquad = 1200$	B1	
	$\frac{\sum x^2}{20} - 60^2 = 4^2$	М1	Correct variance formula used, condone = 4
	$\sum x^2 = 3616 \times 20 = 72320$	A1	Exact value
		3	

Question	Answer	Marks	Guidance
(ii)	$\sum x = 1200 + 550 = 1750$ $\sum x^2 = 72320 + 40500 = 112800$	M1	Summing both values of $\sum x$ and $\sum x^2$
	Mean = $\frac{their1750}{30}$ = 58.3	B1FT	FT their 1750 (not 550 or 1200)/their(20+10), accept unsimplified
	Variance = $\frac{their112820}{30} - \left(\frac{their1750}{30}\right)^2 = (=357.89)$	M1	substitute their Σx and Σx^2 into correct variance formula
	s.d. = 18.9	A1	
		4	

32. 9709_w19_ms_61 Q: 5

Question	Answer	Marks	Guidance
(i)	156-55=99	B1	98 ≼ answer < 100
		1	
(ii)	90% of 160 = 144	M1	144 seen, may be marked on graph
	(L=)22	A1	
	***	2	
(iii)	Median = 15.6 UQ = 18.8, LQ = 12.7	В1	15.5 < median < 15.8
	IQR = 18.8 – 12.7	M1	18.5 < UQ < 19 – 12.5 < LQ < 13
	6.1	A1	$6.0 \leqslant IQR \leqslant 6.2$
		3	
(iv)	The Median higher for Ransha (1st set of data)	B1	Any correct comparison of central tendency, must mention median
	IQR lower for Ransha (1st set of data)	B1	Any correct comparison of spread, must refer to IQR
		2	

$33.\ 9709_w19_ms_62\ Q{:}\ 1$

Question	Answer	Marks	Guidance
(i)	Median = 51 UQ = 57.5, LQ = 40	B1	
	IQR = UQ - LQ	М1	$55 \leqslant UQ \leqslant 62 - 38 \leqslant LQ \leqslant 45$
	17.5	A1	NFWW
		3	
(ii)	Result will be disproportionately affected by 110	В1	Affected by an extreme/large value There is a large outliercontains outliers such as 110 Not 'mean affected by extreme values'
		1	

$34.\ 9709_w19_ms_62\ Q:\ 3$

Question	Answer	Marks	Guidance
(i)	0.5 2.4 3 1.4 0.4	M1	At least 3 frequency densities calculated (frequency \div class width) e.g. $\left(\frac{10}{20}, \frac{10}{19} \text{ or } \frac{10}{19.5}\right)$ may be read from graph using <i>their</i> scale, 3SF or exact
	All heights correct on graph.	A1	
	Bar ends of 9.5, 29.5, 39.5, 59.5, 89.5	B1	10
	Axes labelled: Frequency density (fd) and speed/km h^{-1} (or appropriate title). Linear scales $9.5 \le horizontal axis \le 89.5$, $0 \le vertical axis \le 3$, 5 bars with no gaps	B1	
		4	•

Question	Answer	Marks	Guidance
(ii)	$\frac{19.5 \times 10 + 34.5 \times 24 + 44.5 \times 30 + 54.5 \times 14 + 74.5 \times 12}{their 90}$ $= \frac{195 + 828 + 1335 + 763 + 894}{90}$ $= \frac{4015}{90} \text{ or } \frac{803}{18}$	M1	Uses at least 4 midpoint attempts (e.g. 19.5 ± 0.5). Allow unsimplified expression.
	$44\frac{11}{18}$ or 44.6 (km h ⁻¹)	A1	Final answer not an improper fraction NFWW
		2	

35. 9709_w19_ms_63 Q: 5

Question	Answer	Marks	Guidance
(i)	Correct labels and scales	B1	Axes labelled 'cumulative frequency' (or cf) and 'time (or t) [in] min(utes)', linear scales from 0 to 90 and 0 to 200 with at least 3 values marked on each axis.
	7 correctly plotted points above upper boundaries joined in a curve or line segments	B1	(0, 0); (10, 16); (20, 50); (30, 106); (50, 146); (70,176); (90,200)
		2	
(ii)	29	B1	28 ≤ median ≤ 30
		1	
(iii)	120 seen	M1	For seeing 120 in a calculation or marked on the graph
	37	A1FT	36 ≤ Ans ≤ 39 or FT from <i>their</i> graph SC1 unsupported answer in range
		2	
(iv)	Frequencies 16 34 56 40 30 24	B1	Seen. Allow unsimplified
	Est. Mean = $\frac{5 \times 16 + 15 \times 34 + 25 \times 56 + 40 \times 40 + 60 \times 30 + 80 \times 24}{200}$	M1	At least 4 correct midpoints (5, 15, 25, 40, 60, 80) used in a calculation
	$\frac{7310}{200}$	М1	Summing products of <i>their</i> 6 mid-points (not lower or upper bound or class width) \times <i>their</i> frequencies / 200 (or <i>their</i> Σf), unsimplified
	36.55	A1	Accept 36.6
		4	VO) Y

$36.\ 9709_m18_ms_62\ Q:\ 1$

Question					Answ	er			4	Marks	Guidance
	FREQUENCY	1000 800 600			9	-0	0	3		M1 A1	Attempt to plot cumulative frequencies at ucb and all points joined between $(3,y_1)$ and $(14,y_2)$. Cf table not required. Linear scales starting at $(0,0)$ and axes labelled cf and time in mins, all points correct; (allow straight lines or curves)
	0 5 10 15 TIME, IN MINUTES						10 ES		15	M1	450 seen in median attempt on increasing CF graph (independent);
	t	0	3	4	5	6	8	10	14		
	cf	0	120	300	500	660	770	850	900		
	Median value: 4.8 (minutes)								A1 FT	Correct (4.7 \leq m < 4.9) or FT from reading their increasing graph at cf = 450	
			ggd							4	

$37.\ 9709_m18_ms_62\ Q{:}\ 5$

Question	Answer	Marks	Guidance
(i)	$ 24.25n - 20n = 136 $ Or $ \frac{136}{n} + 20 = 24.25 $	M1	Unsimplified correct equation
	n = 32	A1	
		2	
(ii)	Using coded information: Variance = $\frac{2888}{32} - \left(\frac{136}{32}\right)^2$	M1	unsimplified expression for variance
	= 72.1875 = 72.19	A1	accept answers 72.2 SOI
	Using uncoded information: Variance = $\frac{\sum x^2}{32} - 24.25^2$ Equate with 72.1875 to give	M1	Equate two expressions for variance and solve
	$\sum x^2 = 21128$	A1	
		4	

38. $9709_s18_ms_61$ Q: 1

Question	Answer	Marks	Guidance
	$\Sigma(x-10) = 186 - 12 \times 10 = 66$	B1	Correct answer
	$\frac{\Sigma(x-10)^2}{12} - \left(\frac{\Sigma(x-10)}{12}\right)^2 = 4.5^2$	M1	Consistent substituting in the correct coded variance formula OR Valid method for Σx^2 then expanding $\Sigma (x-10)^2$, 3 terms with at least 2 correct
	$\Sigma(x-10)^2=606$	B1	Correct answer
		3	

$39.\ 9709_s18_ms_61\ Q:\ 2$

Question	Answer	Marks	Guidance
(i)	LQ = 18, Median = 25, UQ = 50	B1	median correct
		B1	LQ and UQ correct
		B1	Quartiles and median plotted as box graph with linear scale min 3 values
	1	B1ft	Whiskers drawn to correct end points with linear scale, not thr' box, not joining at top or bottom of box. Ft their UQ and LQ. Whiskers must be with ruler If scale non-linear or non-existent SCB1if all 5 data values (quartiles and end points) have values shown and all are correct numerically and fulfil the 'box' and 'whiskers ruled line' requirements
		B1	Label to include 'distance or travelled' and 'km,' allow 'total km', linear scale, numbered at least $5-70$.
		5	

Question	Answer	Marks	Guidance
(ii)	1.5 × IQR = 48 Method 1 LQ - 48 = -ve, (i.e. < 0) UQ + 48 = 98 (i.e. > 70)	M1	Attempt to find 1.5 \times their IQR and add to UQ or subt from LQ
	hence no outliers	A1	Correct conclusion from correct working, need both ends. No need to state comparisons.
	Method 2 LQ - 5 = 13 (< 48) 70 - UQ = 20 (< 48)	M1	Compare their $1.5 \times IQR$ (= 48) > gap (20) between UQ and max 70 or LQ and min 5
	Hence no outliers	A1	Correct conclusion from correct working, need both ends. No need to state comparisons
		2	

$40.\ 9709_s18_ms_62\ Q:\ 1$

Question	Answer	Marks	Guidance
(i)	38	В1	
		1	
(ii)	Median = 38.5	В1	CAO
	IQR = 40 - 38	М1	$39 < UQ < 45 - 36 < LQ \le 38$
	= 2	A1	If M0 awarded SCB1 for both UQ = 40 or 40.5 and LQ = 38 or 37.75 seen
		3	

41. 9709_s18_ms_62 Q: 5

Question	Answer	Marks	Guidance
(i)	a = 40	B1	
		1	
(ii)	Mean = $\frac{0.5 \times 14 + 1.5 \times 46 + 3.5 \times 102 + 7.5 \times their 40 + 20 \times 40}{242}$	M1	Numerator: 5 products with at least 3 acceptable mid-points × appropriate frequency FT (i). Denominator: 242 CAO
	$=\frac{1533}{242}$		$\frac{1533}{242}$ implies M1, but if FT an unsimplified expression required
	$= 6\frac{81}{242} \text{ or } 6.33$	A1	CAO (6.3347 rounded to 3 or more SF)
		2	
(iii)	fd = 14, 46, 34, $(\frac{their(i)}{5}) = 0$ 8, 2	M1	Attempt at fd [f/(attempt at cw)] or scaled freq
	fd 50	A1FT	Correct heights seen on diagram with linear vertical scale from $(x, 0)$ FT their $\frac{a}{5}$ only
	30 –	В1	Correct bar widths (1:1:3:5:20) at axis, visually no gaps, with linear horizontal scale from $(0, y)$, first bar starting at $(0,0)$
	20 -	В1	Labels (time, mins, and fd(OE) seen, some may be as a title) and a linear scale with at least 3 values marked on each axis. (Interval notation not acceptable)
	5 10 15 20 25 22		
	5 10 15 20 25 30 Length phone call /mins		
		4	

$42.\ 9709_s18_ms_63\ Q\!: 1$

Question	Answer	Marks	Guidance
(i)	15-19 (kg) cao	B1	kg not necessary; condone 14.5 – 19.5
	Total:	1	
(ii)	fd = 1.2, 2.4, 2.8, 1, 0.32	M1	Attempt at fd [f/(attempt at cw)] or scaled freq (may be implied by 4 correct)
	3- 1	A1	Correct heights seen on diagram with linear vertical scale from $(x, 0)$
	2-	B1	Correct bar widths (1:1:1:2:5) visually no gaps with linear horizontal scale from $(9.5,y)$ and first bar starting at $(9.5,y)$
	1-	B1	Histogram, using attempted fds, with labels (mass, kg and fd seen) and at least 3 linearly spaced values on each axis.
			Horizontal axis must range from at least 9.5 to 59.5
	9.5 19.5 39.5 59.5 Mass (kg)		If horizontal axis clearly starts from zero, either a break in the scale must be indicated or the scale must be linear from zero.

$43.\ 9709_s18_ms_63\ Q:\ 4$

Question	Answer	Marks	Guidance
(i)	Mean = $(30 \times 1500 + 21 \times 2400)/51$	M1	Multiply by 30 and 21, summing and dividing total by 51 $\left(\frac{45000 + 50400}{51}\right)$
	= 1870 (1870.59)	A1	correct answer (to 3sf)
	Total:	2	
(ii)	$\sum_{x = 2}^{2} \sum_{x = 1}^{2} \sum_{x = 2}^{2} $	M1	One correct substitution into a correct variance formula
	$230^2 = \frac{\Sigma x_F^2}{30} - 1500^2 \text{ so } \Sigma x_F^2 = 69087000$	A1	Correct Σx_F^2 (rounding to 69 000 000 2sf)
	$160^2 = \frac{\Sigma x_L^2}{21} - 2400^2 \text{ so } \Sigma x_L^2 = 121497600$	A1	Correct Σx_L^2 (rounding to 121 000 000 3sf)
	New var = $\frac{69087000 + 121497600}{51} - 1870.588^2 = 237853$		using ' Σx_F^2 '+ '' Σx_L^2 dividing by 51 and subtracting 'i' squared.
			(Correct ' Σx_F^2 ' + '' $\Sigma x_L^2 = 190584600$)
	New sd = 488	A1	Correct answer accept anything between 486 and 490
	Total:	5	

44. 9709_w18_ms_61 Q: 6

Question	Answer	Marks	Guidance
(i)	300 250 200 200 200 200 200 200 200 300 200 300 3	В1	Appropriate linear scales starting at (0,0), axes labelled cf and Rainfall, mm
		B1	Correct graph, points plotted at ucb, allow straight lines or curve
		2	
(ii)		M1	Read off from increasing graph at cf = 150
	42	A1	Correct answer $(41 \leqslant r \leqslant 43)$
		2	

Question	Answer	Marks	Guidance
(iii)	Frequencies 52, 42, 48, 30, 50, 28	B1	Correct frequencies
	Mean age = $ (10 \times 52 + 25 \times 42 + 35 \times 48 + 45 \times 30 + 60 \times 50 + 85 \times 28) / 250 $	B1	Correct midpoints (allow one error)
	=9980/250	M1	Using $\Sigma fx/250$ with mid-points attempt, not cf, cw, lb, ub
	= 39.9(2) oe	A1	Correct answer
	Variance = $10^2 \times 52 + 25^2 \times 42 + 35^2 \times 48 + 45^2 \times 30 + 60^2 \times 50 + 85^2 \times 28) / 250 - $ mean ² = 539.59	M1	Attempt at variance using their midpoints and their mean
	σ = 23.2	A1	Correct answer for sd
		6	

$45.\ 9709_w18_ms_62\ Q:\ 2$

Question	Answer	Marks	Guidance
(i)	median = 0.225; LQ = 0.215: UQ = 0.236	B1	Correct median (Q ₂)
	IQR = 0.236 - 0.215	M1	$0.232 < UQ(Q_3) < 0.238 - 0.204 < LQ(Q_1) < 0.219$
	= 0.021	A1	www Omission of all decimal points MR-1 If M0 awarded SCB1 for both LQ = 0.215: UQ = 0.236 seen
		3	
(ii)	A	Bi	Linear scale between 0.20 to 0.26 (condone omission of 0.26) axis labelled (time and seconds), at least one box plot attempted, no lines through boxes, whiskers not at corner of boxes
	20	B1 ft	Labelled correct graph for A, (ft their median/quartiles), condone lines through boxes, whiskers at corner of boxes
	A 0.200 0.215 0.225 0.236 0.250	В1	Labelled correct graph for B, condone lines through boxes, whiskers at corner of boxes
	B 0.205 0.217 0.235 0.245 0.258		SC If B0B0 scored because graphs not labelled/labels reversed SCB1 if both 'correct'
			Penalty MR-1 if graphs plotted on separate axes unless both scales align exactly.
	**	3	

 $46.\ 9709_w18_ms_62\ Q\hbox{:}\ 5$

Question	Answer	Marks	Guidance
(i)	$\frac{15.5 \times 12 + 910}{12 + 20}$	M1	Unsimplified total age divided by <i>their</i> total members (not 12, 20 or 2)
	=34.25 or 34 ¹ / ₄ (years)	A1	Correct exact answer (isw rounding), oe (34 years 3 months)
		2	
(ii)	Considering Juniors: variance = $\frac{\sum x^2}{12} - 15.5^2 = 1.2^2$	M1	$\frac{\sum x^2}{k} - 15.5^2 = 1.2^2, k = 12 \text{ or } 20$
	$\Sigma x^2 = 2900.28$	A1	Answer wrt 2900
	Considering whole group: $\Sigma z^2 = \Sigma x^2 + \Sigma y^2 = 2900.28 + 42850 = 45750$ Variance = $\frac{\Sigma z^2}{32} - \mu^2 = \frac{their 45750}{12 + 20} - (their 34.25)^2$ (= 256.63)	M1	Their 45750 > 42850 (not 85700 or rounding to 1.8×10^9) in correct variance or std deviation formula (Σx^2 and addition may not be seen)
	s d = 16.0(2)	A1	Correct final answer, condone 16.03
		4	

 $47.\ 9709_w18_ms_63\ Q\hbox{:}\ 7$

Question		Answe	er	Marks	Guidance
(i)			ı	B1	Correct stem, up or down
	Anvils		Brecons		
	8	15			
	9 5	16	6		
	5 3 2 0	17	0 1 2 2 8	2	
	4 1 0	18	1 2 3 3	,	
	6	19	2		
			Key: 5 16 6 means 165 cm for Anvils and 166 cm for Brecons		
			201	В1	Correct Anvils labelled on left, leaves in order from right to left and lined up vertically, no commas
				В1	Correct Brecons labelled on same diagram on right hand side in order from left to right and lined up vertically, no commas
				B1	Correct key, not split, both teams, at least one with cm
	**		7	4	
(ii)	Median = 173			B1	Correct median (or Q2)
	LQ = 169; UQ = 181 IQR = 181 – 169			M1	Either UQ = 181 ± 4 , or LQ = 169 ± 4 and evaluating UQ – LQ
	= 12			A1	Correct answer from 181 and 169 only
				3	

Question	Answer	Marks	Guidance
(iii)	$\Sigma x = 1923 + 166 + 172 + 182 (= 2443)$ $\Sigma x^2 = 337221 + 166^2 + 172^2 + 182^2 (= 427485)$	M1	Correct unsimplified expression for Σx and Σx^2 , may be implied
	$Mean = \frac{\sum x}{14} = \frac{2443}{14} = 174.5$	M1	Correct unsimplified mean
	Variance = $\frac{\sum x^2}{14} - \left(\frac{\sum x}{14}\right)^2 = \frac{427485}{14} - \left(\frac{2443}{14}\right)^2$	M1	Correct unsimplified variance using 14, their Σx and their Σx^2 , not using 1923 and/or 337221
	S d = 9.19	A1	Correct answer
		4	

48. 9709_m17_ms_62 Q: 1

Question	Answer	Marks	Guidance
1	1.6 -1.5 2.3 1.4 -0.6 -0.9 2.5 1.9 2.4 1.9 2.8 1.0	M1	Subtracting 1760, allow max 2 slips
	Mean = 1.23	A1	
	sd = 1.39	A1	.01
	Mean of $x = 1761.23$, sd of $x = 1.39$	A1√	ft their coded mean and sd.
			SR B1 correct mean and sd without use of coded process
	Total:	4	* O

 $49.\ 9709_s17_ms_61\ Q:\ 1$

Question	Answer	Marks	Guidance
(i)	EITHER: $\frac{\sum x}{30} - k = \frac{315}{30} = 10.5$	(M1	Dividing 315 by ±30 and + or – from 50.5 need both and no more
	k = 5.5 - 10.5 = 40	A1)	Correct answer from correct working
	OR: $\sum x = 50.5 \times 30 = 1515, 1515 - 30k = 315$	(M1	Mult by 50.5 by 30 and + or – 315 and dividing by ± 30 need all these
	k = 40	A1)	Correct answer from correct working. 1200 gets M0
	Total:	2	
(ii)	EITHER: var = 4022/30–10.5 ² (=23.817)	(M1	Subst in correct coded variance formula
	sd = 4.88	A1)	
	OR: $\sum x^2 - 2(40) \sum x + 30(40)^2 = 4022$, $\sum x^2 = 77222$ Var = $77222/30 - 50.5^2 (= 23.817)$	(M1	Expanding with $\pm 40\Sigma x$ and $\pm 30(40)^2$ seen
	sd = 4.88	A1)	
	Total:	2	

$50.\ 9709_s17_ms_61\ Q{:}\ 4$

Question	Answer	Marks	Guidance
(i)	fd 16, 14, 11, 505, 2.5	M1	Attempt at fd (must be at least 3 freq/cw) – may be implied by graph
	fd 20 15 10 10 120 140 time sec	A1	Correct heights seen on graph i.e. must see a gap for fd = 2.5 etc.
		B1	Correct end points of bars and correct widths
		B1	labels fd, sec. Time can be optional. Linear axes, condone $0 \le t < 20$ etc.
	Total:	4	

Question	Answer	Marks	Guidance
(ii)	$(10 \times 320 + 30 \times 280 + 50 \times 220 + 80 \times 220 + 120 \times 100) / 1140$	M1	using $\Sigma fx/n$ with mid-point attempt ±0.5, not ends not class widths
	= 45.8	A1	
	Total:	2	

$51.\ 9709_s17_ms_62\ Q:\ 1$

Question	Answer	Marks	Guidance
(i)	$4 \times 5.5 + 3x + 90 = 8 \times 29$	M1	An expression to work out total cost of individual items = $8 \times \text{mean}$, x may be implied.
	$ \begin{array}{c} 112 + 3x = 232 \\ x = 40 \end{array} $	A1	Correct complete unsimplified expression / calculation
	(Cost = \$)40	A1	Units not required
	Total:	3	
(ii)	sd = 0 so all cost the same	M1	Must see comment interpreting sd = 0, OE
	shirts cost $4 \times \$26 = \104 AG	A1	See 4 × \$26, \$130 – \$26 OE. Must have a final value of \$104 stated
	Total:	2	

52. 9709_s17_ms_62 Q: 2

(i)	med = 3.2	B1	Accept 3.2 ± 0.05
	$UQ = 3.65 \le uq \le 3.7 LQ = 2.55 \le lq \le 2.6$	M1	UQ – LQ, UQ greater than their 'median', LQ less than their 'median'
	$IQR = 1.05 \leqslant iqr \leqslant 1.15$	A1	Correct answer from both LQ and UQ in given ranges
	Total:	3	
(ii)	134 – 24 = 110	B1	Accept $108 \le n \le 112$, n an integer
	Total:	1	

Question	Answer	Marks	Guidance
(iii)	200 - 12 = 188 less than length l	M1	188 seen, can be implied by answer in range, mark on graph.
	l = 4.5 cm	A1	Correct answer accept $4.4 \le l \le 4.5$
	Total:	2	

53. 9709_s17_ms_63 Q: 7

(i)	$freq = fd \times ew 10, 40, 120, 30$	M1 A1	Attempt to multiply at least 3 fds by their 'class widths'
	Totals:	2	

Question	Answer	Marks	Guidance
(ii)	length < 5 < 10 < 20 < 25	B1	3 or more correct cfs heights on graph 10, 50, 170, 200
	cf 10 50 170 200	B1	Labels correct cf and length(cm), linear scales from zero (allow 0.5 on horizontal axis)
	150 100 50 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	M1	Attempt (at least three) at plotting at upper end points (either 5 or 5.5, 10 or 10.5 etc.) Starting at (0, 0) polygon or smooth curve increasing with plotted points at lengths 5, 10, 20 and 25
	Totals:	4	
(iii)	median = 14.2	B1	Median (accept 13.2 – 15.2)
	'18.5' - '10'	M1	Subt their LQ from their UQ if reasonable from their graph
	IQ range = 8.5	A1FT	Correct FT using LQ = 10 and UQ between 17.5 and 19.5
	Totals:	3	
(iv)	mean = $(2.5 \times 10 + 7.5 \times 40 + 15 \times 120 + 22.5 \times 30) / 200$	M1	Using mid points (± 0.5) and their frequencies from 7(i) in correct formula
	= 14	A1	
	Totals:	2	
			-

$54.\ 9709_w17_ms_61\ Q:\ 2$

Question	Answer	Marks	Guidance
(i)	Points (5.5,10), (8.5,25), (11.5,42), (16.5,46), (25.5,48)	В1	Correct cfs values seen listed, in or by table or on graph, 0 not required
	cf 50-1	В1	Axes labelled "cumulative frequency" (or cf) and "time [or t etc.] (in) seconds (or sec etc.)". Linear scales – cf 0–48, time 2.5 – 25.5 (ignore <2.5 on time.) At least 3 values stated on each axis, but (0,0) can be implied without stating.
	20 10 0 5 10 15 20 25 time(sec)	В1	All points plotted accurately, (5, 10) etc. scores B0 . Curve or line segments drawn starting at (5.5,10) and passing within '1 scale unit' vertically and horizontally of plotted points
		3	0-

Question	Answer	Marks	Guidance
(ii)	48 - 35 = 13 t = 6.5 sec	M1	Subt 35 (checked ±1 mm on graph) from 48 or 50,
	7 = 6.5 sec	A1	6 ≤ Ans ≤ 7
		2	

$55.\ 9709_w17_ms_61\ Q:\ 4$

Question	Answer	Marks	Guidance
(i)	$\frac{(48.7 \times 12 + 38.1 \times 7)}{19}$	MI	Accept unsimplified (may be separate calculations)
	= 44.8	A1	
	9	2	
(ii)	$7.65^2 = \frac{\Sigma x^2}{12} - 48.7^2 \ \Sigma x^2 = 29162.55$	М1	Substitution in one correct variance formula
	$4.2^2 = \frac{\Sigma y^2}{7} - 38.1^2 \qquad \Sigma y^2 = 10284.75$	A1	One Σx^2 or Σy^2 correct (can be rounded to 4sf))
	Combined var = $\frac{(29162.55 + 1028475)}{19} - 44.79^2$	M1	Using their Σx^2 and Σy^2 and their 4(i) in the variance formula
	$=\frac{39447.3}{19}-44.79^2$		
	Combined $\sigma = 8.37$ or 8.36	A1	
		4	

$56.\ 9709_w17_ms_62\ Q:\ 1$

Question	Answer	Marks	Guidance
	EITHER: $(\Sigma x =) \ 11.5n = 27 + 10n$	(M1	Expanding brackets and forming a three term equation involving 27 and at least one term in n , without x
		M1	10 <i>n</i> or 11.5 <i>n</i> seen in expression without x (1.5 n = 27 implies M2)
	n = 18	A1)	
	OR : $11.5 = \frac{27}{1} + 10$	(M1	Dividing coded sum by n and forming a three term equation involving 11.5 and at least one term in n , without x
	n	M1	27/n seen in expression without $x(1.5 = \frac{27}{n} \text{ implies M2})$
	n = 18	A1)	
		3	

$57.\ 9709_w17_ms_62\ Q:\ 2$

Question	Answer	Marks	Guidance
(i)	points (50, 14), (80, 62), (100, 132), (120, 140)	B1	Correct cfs values seen listed, in or by table or on graph, 0 not required
	cf 200_	В1	Axes labelled 'cumulative frequency' (or cf) and 'circumference [or cir or c etc.] (in) cm'. Linear scales – c.f. 0–140 circumference 40–120 (ignore <40 on circ.) At least 3 values stated on each axis, but (0,0) can be implied without stating.
	0 20 40 60 80 100 120 Circumference cm	В1	All points plotted accurately
	2	3	
(ii)	140 – 54 = 86	M1	Finding correct value from graph (checked ±1 mm) or linear interpolation. Subtraction from 140 can be implied
	Percentage = 61.4%	A1	60.5% ≤ Ans ≤ 64.5%
		2	

58. 9709_w17_ms_63 Q: 2

Question	Answer	Marks	Guidance
2	$\Sigma(x - 45) = 1218 - 20 \times 45 = 318$	B1	
	$\frac{\Sigma(x-45)^2}{20} - \left(\frac{\Sigma(x-45)}{20}\right)^2 = 4.2^2$	M1	Fully correct substitution in the correct coded variance formula with their $\Sigma(x-45)$ OR valid method for $\Sigma x^2 = 74529$ ($4.2^2 = \frac{\Sigma x^2}{20} - \left(\frac{1218}{20}\right)^2$) and expanding $\Sigma(x-45)^2$ correctly $= \Sigma x^2 - 90\Sigma x + 20\times 45^2 = '74529' - 90\times 1218 + 40500 = 5409$
	$\Sigma(x-45)^2=5409$	A1	
		3	

$59.\ 9709_w17_ms_63\ Q{:}\ 5$

Question		Answer	Marks	Guidance
(i)			В1	Stem, digits 5, 7, 9 can be missing here, can be upside down
	1	2 2 5 6 9 0 0 0 2 2 3 3 4 7 7 8 8	В1	All leaves in correct order increasing from stem, (5, 7 and 9 can be missing), condone commas
	2 3 4 5	2 8 8 3 4 5 8 4 4 5 8 4 5	B1	Reasonable shape, requires all values of the stem, only one line for each stem and leaves must be lined up. Can be upside down or sideways. No commas. Condone one 'leaf' error.
	6 7 8 9	5 2 8 4 key 2 8 means 28 medals	B1	Correct key must state 'medals' or have 'medals' in leaf heading or title
	10	4 Key 2 6 means 26 medals	4	

Question	Answer	Marks	Guidance
(ii)	Med = 17		Median correct
	LQ = 10 UQ = 35 0 10 20 30 40 50 60 70 80 90 100 110 Number of medals	B1	LQ and UQ correct
		В1	Uniform scale from 2 to 104 (need 3 identified points min) and label including medals (can be in title)
		B1 FT	Correct box med and quartiles on diagram, FT their values
		B1	Correct end-whiskers from ends of box but not through box
		5	NO Y

$60.\ 9709_m16_ms_62\ Q:\ 1$

(i)	$\Sigma x = 862$	В	Ð	1	Must be stated or replaced in (ii) Can see (i) and (ii) in any order
(ii)	362/10 + a = 86.2 $a = 50$	N A		2	86.2 ± 36.2 seen oe Correct answer, nfww

61. 9709 m16 ms 62 Q: 4

32	B1 1	
freqs 0 18 32 9 4 fd 0 1.2 1.6 0.6 0.2 cf	M1	attempt at fd or scaled freq (at least 3 f/cw attempt)
<u>2</u> 	A1	correct heights seen on diagram
	B1	Correct bar ends
0 10 20 30 40 50 60 70 80 Time (mins)	B1 4	Labels fd and time (mins) and linear axes or squiggle
_	freqs 0 18 32 9 4 fd 0 1.2 1.6 0.6 0.2 cf 2 0 10 20 30 40 50 60 70 80	freqs 0 18 32 9 4 fd 0 1.2 1.6 0.6 0.2 M1 cf A1 B1 B1 4

(iii)	$(17.5 \times 18 + 35 \times 32 + 52.5 \times 9 + 70 \times 4)/63$	M1	1	$\Sigma fx/63$ where x is midpoint attempt not
	= 2187.5/63 = 34.7	A1	2	end pt or cw Correct answer

62. 9709_s16_ms_61 Q: 7

Question	Answer	Marks		Guidance
(iii)	160 - 149 = 11 OR 115 is mid pt of last interval so # of shoppers is $30/2 = 15$ (can be implied)	M1 A1	[2]	41–46 Subtracting from 160 can be implied Correct answer accept 9–16
(iv)	mean = (15×16+ 40×40 +60×48+ 80×26 + 115×30)/160 = 10250/160 = \$64.1= \$64.1	M1 A1	[2]	Using $\Sigma x f/160$ with mid-points

 $63.\ 9709_s16_ms_62\ Q\hbox{:}\ 5$

5 (i)	Bronlea Rogate	B1	Correct single stem
	6 3 0 4 5 7 7	B 1	Correct ordered leaves Bronlea
	7 4 3 1 0 1 3 5 6 8	B 1	Correct ordered leaves Rogate
	8 7 5 4 2 1 2 3 3 6		
	3 2 3 4	B1	Correct overall shape
	5 4		
	Key 3 1 5 represents 13 kph for Bronlea	B1 [5]	Single key must have both towns and
	and 15 kph for Rogate		units consistent with their values
(;;)	modian Pranlag = 22 km nor hour	B1	Units not negggggry
(ii)	median Bronlea = 23 km per hour		Units not necessary
	IQ range Rogate = $23 - 7$	M1	Subt their LQ <14 from their UQ>14 from
		_	Rogate leaf
	= 16	A1 [3]	
(iii)	Rogate is less windy than Bronlea	B1 [1]	Not a comparison of a statistic but
			interpretation of information

 $64.\ 9709_s16_ms_63\ Q:\ 2$

(i)	girls	B1	Labels 'time' and 'seconds', 'boys' and 'girls' on correct plots and scaled line
	boys	B1	One box and whisker all correct on graph paper – ignore boy or girl label
	4 6 8 10 12 14 16 Time in seconds	B1 [3]	Second box and whisker all correct (on graph paper and ignore boy/girl label) on SAME scaled line.
(ii)	girls smaller range or IQ range than boys /girls less spread out oe	B1	Any 2 comments – MUST be a comparison
	girls generally quicker than boys or girls median boys median (not mean) oe boys almost symmetrical, girls +vely skewed oe	B1 [2]	Comparison

 $65.\ 9709_s16_ms_63\ Q{:}\ 4$

Qu	Answer	Ma	rks	Guidance
(i)	1845/9 (= 205) c = 2205 - 205 = 2000	M1 A1		Accept (1845± anything)/ 9
	OR $\Sigma x = 2205 \times 9 \ (= 19845)$ $\Sigma x - \Sigma c = 1845$	M1		For 2205 × 9 seen
	$\sum c = 19845 - 1845 = 18000$ $c = 2000$	A1	[2]	
(ii)	$var = \frac{477450}{9} - 205^2$ $= 11025$	M1 A1		For $\frac{477450}{9}$ – (their coded mean) ²
	OR var = $\frac{43857450}{9} - 2205^2$	M1		For their $\Sigma x^2/9 - 2205^2$ where Σx^2 is obtained from expanding $\Sigma (x-c)^2$ with
	= 11025	A1	[2]	$2c\Sigma x$ seen
(iii)	new total = 2120.5×10 = 21205	M1		Attempt at new total
	new price = 21205 – 19845 = 1360	A1	[2]	40

66. $9709_{w}16_{ms}61 Q: 7$

(i)	Factory A		Factory B	M1		Attempt at ordering
		3	158			factory B
	9	4	24789	B1		Correct stem
	9887430	5	1468			
	5 3 1 1 1	6	4	B1		Correct leaves factory A
	Key: 9 4 2 repr	resei	nts 0.049g for factory	B1		Correct leaves factory B
	A and 0.042 g for fa	actor	y B	B1	[5]	Correct key need factory A and factory B and units
(ii)	median factory $B =$	0.04	18 g	B1		using their key i.e. 48, 0.48 etc
	IQR = UQ - LQ =	0.05	5 – 0.04	M1		or correct Subt their LQ from their UQ
	= 0.015			A1	[3]	for factory B
(iii)	generally heavier in	fac	tory A	B1		oe
	Masses more spread			B1	[2]	must refer to context, e.g. mass

67. 9709_w16_ms_62 Q: 5

(i)	cw 5, 5, 10, 20, 40 fd 8, 6, 1.8, 1.7, 0.2	M1 M1		cw either 4 or 5 etc fd or scaled freq [f/their cw attempt] fd may be ÷ 1000
		A1		Correct heights seen accurately on diagram
		B1		Correct bar ends, accurately plotted on axis
	0 10 20 30 40 50 60 70 80 90 Capacity (1000s)	B1	[5]	Labels fd and capacity (thousands) Correct horizontal scale required. Vertical scale linear from 0
(ii)	(5×40+10×30+17.5×18+32.5×34+62.5×8)/130	M1		$\Sigma fx/130$ where x is mid point attempt (value within class, not end pt or cw)
	= 2420/130 = 18.6 thousand	A1	[2]	
(iii)	median group = $8 - 12$ thousand LQ group = $3 - 7$ thousand	B1 B1	[2]	Thousands not needed

 $68.\ 9709_w16_ms_63\ Q:\ 5$

(i)	cf	B1		Horizontal axis from min of 140 to 190 and
	60 45			vertical axis from 0 to minimum of 60 and two CF graphs on the same set of axes.
	30 boys	B1		Labels: CF; height (ht) in cm; girls; boys in correct places
	15-	B1		CF graph going through (150, 0), (160, 20), (170, 43), (180, 55) and (190, 60)
	140 150 160 170 180 190 Ht in cm	B1	[4]	CF graph going through (140, 0), (150, 12), (160,33), (170,50), (180, 60) [and (190, 60)]
(ii)	42 (± 1) shorter than 165.	M1		Line or reading from 165 on their cf graph oe subtracting from 60
	$ (18(\pm 1))/60 \times 100 $ = 30% (± 1.7%)	M1 A1	[3]	
(iii)	can see which is taller; see which of boys or girls is more spread out	B1	[1]	any sensible comment in context

 $69.\ 9709_s15_ms_61\ Q\hbox{:}\ 2$

(i)	UQ 5.5 – 7.0 cm	B1 [1]	
(ii)	fd 5.33, 25, 28, 20.7, 6, fd 30 –	M1	Attempt at fd or scaled freq [fr/cw]
	25 - 20 -	A1	Correct heights seen on graph
	15 - 10 - 5	B1	Correct bar widths no gaps
	0 2 4 6 8 10 length in cm	B1 [4]	Labels (fd and length/cm) and correct bar ends

 $70.\ 9709_s15_ms_61\ Q\hbox{:}\ 5$

(i)	new mean = $\frac{9 \times 7.1 + 18 \times 5.2}{27}$ = 5.83	M1 A1 [2]	Mult by 9 and 18 and dividing by 27 correct answer
(ii)	$1.45^2 = \text{ so } \frac{\sum x_t^2}{9} = 472.6125 \text{mm}$	M1 A1	subst in a correct variance formula sq rt or not correct Σx_t^2 (rounding to 470)
	$0.96^{2} = \frac{\sum x_{g}^{2}}{18} - 5.2^{2} \text{ so}$ $\Sigma x_{g}^{2} = 503.3088$	A1	correct Σx_g^2 (rounding to 500)
	New sd ² $\frac{472.6^2 + 503.3^2}{27} - 5.83^2 = 2.117$	M1	using $\Sigma x_t^2 + \Sigma x_g^2$, dividing by 27 and subt comb mean ²
	New sd = 1.46	A1 [5]	correct answer

71. 9709_s15_ms_62 Q: 2

2	mid points 13, 30.5, 40.5, 50.5, 73	M1	Attempt at midpoints at least 3 correct
	Mean = $ \frac{4 \times 13 + 24 \times 30.5 + 38 \times 40.5 + 34 \times 50.5 + 20 \times 73}{120} $	M1	Using their midpoints i.e. cw, ucb, 1/2 cw and freqs into correct formula must be divided by 120
	$=\frac{5500}{120}=45.8$	A1	Correct answer from correct working Evaluating
	$var = \frac{4 \times 13^{2} + 24 \times 30.5^{2} + 38 \times 40.5^{2} + 34 \times 50.5^{2} + 20 \times 73^{2}}{120} - (45.8)^{2}$	M1	$\frac{\sum fx^2}{120} - \text{their } \overline{x}^2 \text{ must see their } 45.8^2$ subtracted allow cw etc
	$= \frac{278620}{120} - 45.8^{2}$ $= 2321.8333 - 45.8^{2}$ $sd = 14.9$	A1 5	Correct answer

72. $9709_s15_ms_62$ Q: 3

(i)	0 1 2 3 4 5 6 7 8 9 10 time in sec	B1 B1 √ B1 B1 4	LQ = 2.6 med = 3.8–3.85, UQ = 6.4–6.6 Correct quartiles and median on graph ft linear from 2–10 End whiskers correct not through box Label need seconds and linear 2–10 axis or can have 5 values on boxplot no line provided correct
(ii)	$1.5 \times IQR = 1.5 \times 3.8 = 5.7$ LQ - 5.7 = -ve, $UQ + 5.7 = 12.1$ i.e. > 10 So no outliers AG	M1 A1 2	Attempt to find 1.5 × IQR and add to UQ or subt from LQ OR compare 1.5 × IQR with gap 3.6 between UQ and max 10 Correct conclusion from correct working need both

73. 9709_s15_ms_63 Q: 6

(i)	cf •	В1		Uniform axes cf and nitrogen content labelled, at least 0 to 70 and 3.5 to 4.8 seen
	3.5 4.0 4.5 5.0 nitrogen	M1		5 points plotted correctly on graph paper 3.5 3.8 4.0 4.2 4.5 4.8 0 6 18 41 62 70
	content	A1	[3]	All points correct and a reasonable curve (condone 1 missed point) or line segments.
(ii)	70 – their 55 = 15 = 21.4%	M1 A1	[2]	Subt a value > 41 from 70 (or $n/70$, $n<29$) Correct ans, accept $18.5 - 22$
(iii)	median = 4.15	B1	[1]	Accept 4.1 < median < 4.2, nfww

 $74.\ 9709_w15_ms_61\ Q:\ 3$

(i)	a = 9/cw = $9/2 = 4.5$ 1.5 = b/4 so $b = 6$	M1 A1 A1 [3]	Using fd = f/cw Correct a Correct b
(ii)	fd 6-	B1√	Correct heights ft their b
	2-	B1	Correct widths, ie 3, 2, 3, 4 starting either 60 or 59.5
	60 62 64 66 68 70 72 Time in minutes	B1 [3]	Labels fd, time or minutes and squiggle and bars from 59.5 to 71.5

75. $9709_{\text{w}15}_{\text{ms}}62 \text{ Q: } 1$

76. $9709 w15 ms_62$ Q: 5

(i)	team A team B 7 5 7 9 4 4 2 8 2 3 4 6 9 8 7 6 1 9 4 5 6 9 7 4 0 10 1 8	B1 B1	Correct stem can be upside down, ignore extra values, allow 70, 80 etc with suitable numerical key Correct team A must be on LHS, alignment ± half a space, no late entries squeezed in, no crossing out if shape is changed
	6 5 11 1 3 5 2 12 1 8 key 1 9 4 means 91 kg for team A and 94 kg for B	B1 4	Correct team <i>B</i> in single diagram can be either LHS or RHS Correct key or keys for their diagram/s, need both teams, at least one kg.
(ii)	LQ = 91 UQ = 109 IQ range = 18	B1 B1 [↑] 2	Both quartiles correct Correct IQR ft wrong quartiles, LQ < UQ, not 12 – 4 etc
(iii)	$\Sigma x_{15} = 1399$ $\Sigma x_{16} = 16 \times 93.9 = 1502.4$ New wt = 1502.4 - 1399 = 103 (103.4)	M1 M1 A1 3	Attempt at Σx_{15} for either team Mult 93.9 by 16 attempt Correct answer

77. $9709 w15 ms_63$ Q: 1

coded mean = 0.3 oe	B1		$\Sigma(t-2.5) = 75 \text{ B0 until} \div 250$
$sd = \sqrt{\frac{96.1}{250} - (0.3)^2}$	M1		Subst in variance formula both terms coded
= 0.543	A1	3	Correct answer
Alt: $\Sigma (t-2.5)^2$ expanded $\Sigma t^2 = 2033.6$	Or B1		
$sd = \sqrt{\frac{2033.6}{250} - 2.8^2}$	M1		Substituting their Σt^2 from expanded 3-term
= 0.543	A1	3	expression, 250 and 2.8 in variance formula

78. $9709_{\text{w}15}_{\text{ms}}_{63}$ Q: 6

(ii)	$(30.5 \times 18 + 43 \times 15 + 48 \times 21 + 55.5 \times 52 + 70.5 \times 28)/134$	M1		Attempt at unsimplified, mid points (at least 4 within 0.5)
	$=\frac{7062}{134}=52.701$	M1 A1		Attempt at Σfx their mid points ÷ 134 Correct mean rounding to 53
	Var = $(30.5^2 \times 18 + 43^2 \times 15 + 48^2 \times 21 + 55.5^2 \times 52 + 70.5^2 \times 28)/134 - 52.701^2$ = $392203.5/134 - 52.701^2 = 149.496$	M1		Attempts at Σfx^2 their mid points ÷ their Σf mean ²
	= 392203.5/134 – 52.701 ² = 149.496 sd = 12.2	A1	5	Correct answer, nfww

79. 9709 m 22 ms 52 Q: 5

Question	Answer	Marks	Guidance
(a)	$^{5}C_{1} \times ^{7}C_{4}$	M1	7 C ₄ × k , k integer $\geqslant 1$ Condone 5 P ₁ for M1 only
	175	A1	
		2	

Question	Answer	Marks	Guidance
(b)	2B 1G 2A ${}^{3}C_{2} \times {}^{4}C_{1} \times {}^{5}C_{2} = 120$ 2B 2G 1A ${}^{3}C_{2} \times {}^{4}C_{2} \times {}^{5}C_{1} = 90$	M1	${}^3C_x \times {}^4C_y \times {}^5C_z$, $x + y + z = 5$, x,y,z integers $\geqslant 1$ Condone use of permutations for this mark
	2B 3G ${}^{3}C_{2} \times {}^{4}C_{3} = 12$ 3B 1G 1A ${}^{3}C_{3} \times {}^{4}C_{1} \times {}^{5}C_{1} = 20$	В1	2 appropriate identified outcomes correct, allow unsimplified
	$^{3}\text{B }^{2}\text{G}$ $^{3}\text{C}_{3} \times ^{4}\text{C}_{2}$ = 6	M1	Summing <i>their</i> values for 4 or 5 correct identified scenarios only (no repeats or additional scenarios), condone identification by unsimplified expressions
	[Total =] 248	A1	Note: Only dependent upon M marks
		4	
(c)	$8! \times 3! \times {}^5P_2$	M1	$8! \times m$, m an integer $\geqslant 1$ Accept $8 \times 7!$ for $8!$
		M1	$3! \times n$, n an integer > 1
		M1	$p \times {}^5\mathrm{P}_2, p \times {}^5\mathrm{C}_2 \times 2, p \times 20, p$ an integer > 1 If extra terms present, maximum 2/3 M marks available
	4838400	A1	Exact value required
		4	

 $80.\ 9709_s22_ms_51\ Q:\ 1$

Question	Answer	Marks	Guidance
(a)	5!	M1	k! where $k = 5$, 6 or 7 Condone × 1 OE
	120	A1	
(b)	[Total no of ways =] $\frac{8!}{2!3!}$ [= 3360]	MI	$\frac{8!}{a!b!}$, $a=1,2$ $b=1,3$ $a \neq b$
	[With 3Es together =] $\frac{6!}{2!}$ [= 360]	MI	$\frac{6!}{c!}$, $c = 1, 2$ seen in an addition/subtraction
	[With 3Es not together] = 3360 – 360	MI	$\frac{8!}{d!e!} - \frac{6!}{f!}$ where $d, f = 1, 2 \& e = 1, 3$
	3000	A1	
		4	

81. 9709_s22_ms_51 Q: 2

Question	Answer	Marks	Guidance
(a)	¹² C ₄ × 2	M1	$g_{C_4} \times h$ $g = 12, 13, h = 1,2$
	990	A1	
	Alternative method for question 2(a)		
	[total – both on – neither on] ${}^{14}C_5 - ({}^{12}C_3 + {}^{12}C_5) = [2002 - 220 - 792]$	М1	a = 12, 13 and k = 13, 14
	990	A1	
		2	
(b)	[Mrs Lan plus] $2W \ 2M ^7C_2 \times ^6C_2 = 315$	M1	$^{7}C_{r} \times ^{6}C_{4-r}$ for $r = 2, 3$ or 4
	$ \begin{array}{lll} 2W & 2M & C_2 \times C_2 & = 315 \\ 3W & 1M & {}^7C_3 \times {}^6C_1 & = 210 \\ 4W & {}^7C_4 & = 35 \end{array} $	B1	Outcome for one identifiable scenario correct, accept unevaluated
		M1	Add outcomes for 3 identifiable correct scenarios Note: if scenarios not labelled, they may be identified by seeing ${}^7C_r \times {}^6C_z \ r + s = 4$ to imply r women and s men for both B & M marks only
	[Total =] 560	A1	
		4	

82. $9709_s22_ms_52$ Q: 6

Question	Answer	Marks	Guidance
(a)	$\left[\frac{9!}{2!2!} = \right] 90720$	B1	
		1	
(b)	Method 1 Arrangements Cs at ends – Arrangements Cs at ends and Os to	ogether	
	[Os not together =] $\frac{7!}{2!}$ - 6! [= 2520 - 720]	M1	$\frac{1}{2!}$ - y, w = 6, 7 y an integer.
			Condone $2 \times \left(\frac{w!}{2!}\right) - y$.
		M1	a-6! or $a-720$, a an integer resulting in a positive answer.
	1800	A1	
	Method 2 identified scenarios R ^ ^ ^ R		
	[Os not together =] $5! \times \frac{6 \times 5}{2!}$ =	M1	$5! \times b, b \text{ integer } > 1.$
	2!	M1	$c \times \left(\frac{6 \times 5}{2!} \text{ or } {}^{6}\text{C}_{2} \text{ or } \frac{{}^{6}P_{2}}{2!} \text{ or } 15\right), c \text{ integer} > 1.$
	1800	A1	
		3	

Question	Answer	Marks	Guidance
(c)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	B1	Correct outcome/value for 1 identified scenario. Accept unsimplified. WWW
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M1	Add 5 or 6 values of appropriate scenarios only, no additional incorrect scenarios, no repeated scenarios. Accept unsimplified. Condone use of permutations.
	[Total =] 50	A1	
	~~	3	
(d)	Both Os in group with a C $^{5}C_{2} = 10$ Both Os in group without a C $^{5}C_{2} \times ^{3}C_{2} = 30$ One O in a C group, one not $^{5}C_{1} \times ^{4}C_{2} = 30$ One O with each C $^{5}C_{1} \times ^{4}C_{1} = 10$	B1	A correct scenario calculated accurately. Accept unsimplified.
		M1	Add 3 or 4 correct scenario values, no incorrect scenarios, accept repeated scenarios. Accept unsimplified.
	[Total =] 80	A1	
	Alternative method for question 6(d)		
	$CCOO^{\land \land \land \land \land} = {}^{5}C_{2} = 10$ $CC^{\land}O^{\land \land}O^{\land \land} = {}^{5}C_{1} \times {}^{4}C_{2} = 30$ $CC^{\land}OO^{\land \land \land \land} = {}^{5}C_{1} \times {}^{4}C_{1} = 20$	B1	A correct scenario calculated accurately. Accept unsimplified.
	Total ways of making three groups $\frac{{}^{9}C_{6} \times {}^{6}C_{3}}{2 \times 2 \times 3} = 140$ 140 – (their 10+ their 30+ their 20)	M1	Total subtract 2 or 3 correct scenario values, no incorrect scenarios. Accept unsimplified.
	80	A1	
		3	

$83.\ 9709_s22_ms_53\ Q\hbox{:}\ 7$

Question	Answer	Marks	Guidance
(a)	$^{12}\text{C}_5 \times ^{7}\text{C}_4 \ [\times \ ^{3}\text{C}_3]$	M1	$^{12}C_r \times q$, $r = 3, 4, 5$ q a positive integer > 1 , no + or
		M1	
	Alternative method for question 7(a)		
	12!	M1	12! ÷ by a product of three factorials.
	5k3k4!	M1	<u>n!</u> 5\times 3\times 4!
	[792 × 35 =] 27 720	A1	CAO
		3	

Question	Answer	Marks	Guidance				
(b)	4! (Lizo) × 6! (Kenny) × 2! (Martin) × 2! (Nantes)	M1	Product involving at least 3 of 4!, 6!, 2!, 2!				
	× 3! (orders of K, M and N)	M1	$w \times 3!$, w integer > 1.				
	414 720	A1	WWW CAO				
		3					
(c)	$^{7}C_{4} \text{ (adults)} \times {}^{4}C_{1} \times {}^{3}C_{1}$	M1	$^{7}C_4 \times b$, b integer > 1 no + or				
	420	A1) *				
		2					
(d)	K not L ${}^5C_3 \times {}^8C_3 = 560$ L not K ${}^5C_3 \times {}^8C_3 = 560$ L and K ${}^5C_2 \times {}^8C_3 = 560$	M1	8 C ₃ (or 8 P ₃)× c for one of the products or 5 C ₃ (or 5 P ₃)× c , positive integer >1 for first 2 products only.				
		M1	Add 2 or 3 correct scenarios only values, no additional incorrect scenarios, no repeated scenarios. Accept unsimplified.				
	[Total or Difference=] 1680	A1					
	Alternative method for question 7(d)						
	Total no of ways – neither L nor K Total = ${}^{7}C_{4} \times {}^{8}C_{3} = 1960$	M1	${}^{8}C_{3} \times c$, c a positive integer >1 .				
	Neither K nor L = ${}^{5}C_{4} \times {}^{8}C_{3} = 280$	M1	Subtracting the number of ways with neither from their total number of ways.				
	[Total or Difference=] 1680	A1					
Question	Answer	Marks	Guidance				
(d)	Alternative method for question 7(d)	,					
	Subtracting K and L from sum of K and L K ${}^{\delta}C_3 \times {}^{\delta}C_3 = 1120$	M1	⁸ C ₃ × c, c a positive integer >1.				
	K ${}^{6}C_{3} \times {}^{8}C_{3} = 1120$ L ${}^{6}C_{3} \times {}^{8}C_{3} = 1120$ L and K ${}^{5}C_{2} \times {}^{8}C_{3} = 560$ 1120 + 1120 - 560 = 1680	M1	Subtracting number of ways with both from sum of number of ways with K and number of ways with L.				
	[Total or Difference=] 1680	A1					
		3					

 $84.\ 9709_m21_ms_52\ Q:\ 6$

Question	Answer	Marks	Guidance
(a)	11! 2!2!2!	М1	11! alone as numerator. $2! \times m! \times n!$ on denominator, $m = 1, 2, n = 1, 2$. no additional terms, no additional operations.
	4989600	A1	Exact answer only.
		2	

Question	Answer	Marks	Guidance		
(b)	Method 1 R ^ ^ ^ ^ ^ R				
	Arrange the 7 letters CTEPILL = $\frac{7!}{2!}$	B1	$\frac{7!}{2!} \times k$ seen, k an integer > 1.		
	Number of ways of placing As in non-adjacent places = 8C_2 $\frac{7!}{2!} \times {}^8C_2$	M1	$m \times n(n-1)$ or $m \times {}^{n}C_{2}$ or $m \times {}^{n}P_{2}$, $n = 7, 8$ or $9, m$ an integer > 1 .		
	2:		$\frac{7!}{p!} \times {}^{8}C_{2}$ or $\frac{7!}{p!} \times {}^{8}P_{2}$, p integer $\geqslant 1$, condone 2520×28.		
	= 70560	A1	Exact answer only. SC B1 70560 from M0, M1 only.		
	Method 2 [Arrangements Rs at ends – Arrangements Rs at ends and As together]				
	Total arrangements with R at beg. and end = $\frac{9!}{2!2!}$	M1	$\frac{9!}{2!m!} - k$, 90720 > k integer > 1, $m = 1, 2$.		
	Arrangements with R at ends and As together = $\frac{8!}{2!}$ With As not together = $\frac{9!}{2!2!} - \frac{8!}{2!}$	B1	$s - \frac{8!}{2!}$, s an integer >1		
	2121 21		$\frac{9!}{p} - \frac{8!}{q}$, p, q integers ≥ 1 , condone 90720 – 20160.		
	[90720 – 20160] = 70560	A1	Exact answer only. SC B1 70560 from M0, M1 only.		
		4			

Question	Answer	Marks	Guidance			
(c)	Method 1					
	$ \begin{array}{lll} RRAL_{-} & {}^{5}C_{2} & = 10 \\ RRALL_{-} & {}^{5}C_{1} & = 5 \\ RRAAL_{-} & {}^{5}C_{1} & = 5 \\ RRAALL & = 1 \\ \end{array} $	М1	5C_x seen alone or $^5C_x \times k$, $2 \ge k \ge 1$, k an integer, $0 < x < 5$ linked to an appropriate scenario.			
		A1	5 C ₂ × k , $k = 1$ oe or 5 C ₁ × m , $m = 1,2$ oe alone. SC if 5 C _{x} not seen. B2 for 5 or 10 linked to the appropriate scenario WWW.			
		M1	Add outcomes from 3 or 4 identified correct scenarios only, accept unsimplified. ${}^2C_w \times {}^2C_x \times {}^2C_y \times {}^5C_z$, $w+x+y+z=6$ identifies w Rs, \times As and y Ls.			
	[Total =] 21	A1	WWW, only dependent on 2nd M mark. Note: ${}^5C_2 + {}^5C_1 + {}^5C_1 + 1 = 21$ is sufficient for 4/4.			
			SC not all (or no) scenarios identified. B1 10+5+5+1 DB1 = 21			
	Method 2 – Fixing RRAL first. N.B. No other scenarios can be present anywhere in solution.					
	$R R A L^{\wedge \wedge} = {}^{7}C_{2}$	М1	$^{7}C_{x}$ seen alone or $^{7}C_{x} \times k$, $2 \geqslant k \geqslant 1$, k an integer, $0 < x < 7$. Condone $^{7}P_{x}$ or $^{7}P_{x} \times k$, $2 \geqslant k \geqslant 1$, k an integer, $0 < x < 7$.			
		M1	$^{7}C_{2} \times k$, $2 \geqslant k \geqslant 1$ oe			
		A1	$^{7}C_{2} \times k$, $k = 1$ oe no other terms.			
	[Total =] 21	A1	Value stated.			
		4				

85. $9709_s21_ms_51$ Q: 1

Question	Answer	Marks	Guidance
	RRRRB ${}^{8}C_{4} \times {}^{4}C_{1} = 280$ BBBBR ${}^{8}C_{1} \times {}^{4}C_{4} = 8$ RRRRR ${}^{8}C_{5} = 56$	M1	$\begin{vmatrix} {}^{8}C_{x} \times {}^{4}C_{y} \text{ with } x + y = 5. \ x, y \text{ both integers, } 1 \leqslant x \leqslant 5, \\ 0 \leqslant y \leqslant 4 \text{ condone } {}^{8}C_{1} \times 1 \end{vmatrix}$
	$KRRR C_5 = 50$	A1	Two correct outcomes evaluated
	00	M1	Add 2 or 3 identified correct scenarios only (no additional terms, not probabilities)
	[Total =] 344	A1	WWW, only dependent on 2nd M mark
	0.0	4	SC not all (or no) scenarios identified B1 280 + 8 + 56 DB1 344

86. 9709_s21_ms_53 Q: 6

Question	Answer	Marks	Guidance
(a)	<u>11!</u> <u>2!3!</u>	М1	11! alone on numerator – must be a fraction. $k! \times m!$ on denominator, $k = 1, 2, m = 1, 3, 1$ can be implied but cannot both $k = 1$. No additional terms
	3326400	A1	Exact value only
		2	
(b)	8! = 40320	B1	Evaluate, exact value only
		1	
(c)	$\frac{9!}{3!} \times 7$	M1	$\frac{9!}{3!} \times k$ seen, k an integer > 0, no +, - or ÷
		M1	$7 \times$ an integer seen in final answer, no +, – or ÷
	423360	A1	Exact value only
	Alternative method for Question 6(c)		0
	${}^{9}C_{3} \times 7! \left(\times \frac{3!}{3!} \right)$	M1	$9C3 \times k$ seen, k an integer > 0 , no + or –
	3!	M1	$7! \times k$ seen, , k an integer > 0 , no + or –
	423360	A1	Exact value only but there must be evidence of $\times \frac{3!}{3!}$

Question	Answer	Marks	Guidance
(c) cont'd	Alternative method for Question 6(c)		
	$3\times7\times\frac{8!}{2!}$	М1	$3 \times \frac{8!}{2!} \times k$ seen, k an integer > 0, no + or –
		M1	7 × an integer seen in final answer, no +, – or ÷
	423360	A1	Exact value only
	Alternative method for Question 6(c)		
	$7 \times \frac{2}{11} \times \frac{9}{10} \times \frac{8}{9} \times \frac{7}{8} \times \frac{1}{7} \times \text{total no. of arrangements}$	M1	Product of correct five fractions \times k seen, k an integer > 0 , no $+$ or $-$
		M1	7×'total no of arrangements' × k seen, k an integer > 0, no + or –
	423360	A1	Exact value only
	Alternative method for Question 6(c)		
	No E between the Rs $-\frac{{}^{6}C_{3}\times3\times7!}{3!} = 100800$	M1	Finding the correct number of ways for no, 1 or 2 Es between the Rs, accept unsimplified.
	1E between the Rs $-\frac{{}^{6}C_{2} \times 3 \times 7!}{2!} = 226800$	M1	Adding the number of ways for 3 or 4 correct scenarios
	2Es between the Rs $-{}^{6}C_{1} \times 3 \times 7! = 90720$ 3Es between the Rs $-7! = 5040$		
	$[\text{Total} = 7 \times (20 + 45 + 18 + 1) = 7 \times 84 =]423360$	A1	CAO
		3	

Question	Answer	Marks	Guidance		
(d)	EER 6C_2=15 EERR 6C_1=6	M1	Identifying four correct scenarios only.		
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	B1	Correct number of selections unsimplified for 2 or more scenario.		
		M1	Adding the number of selections for 3 or 4 identified correct scenarios only, accept unsimplified. ${}^3C_x \times {}^2C_y \times {}^6C_z, x + y + z = 5$ correctly identifies x Es and y Rs		
	[Total =] 28	A1	WWW, only dependent upon 2nd M mark.		
	Alternative method for Question 6(d) – Fixing EER first. No other scenarios can be present anywhere in solution.				
	$E \to R \land \land = {}^8C_2$	M1	8C_x seen alone or $^8C_x \times k$, , $k = 1$ or 2, $0 < x < 8$ Condone 8P_x or $^8P_x \times k$, $k = 1$ or 2, $0 < x < 8$		
		B1	8 C ₂ × k , $k = 1$ or 2 OE		
		M1	8 C ₂ × k , $k = 1$ OE and no other terms		
	[Total =] 28	A1	Value stated		
		4	0.		

87. $9709_{w21}_{ms_52}$ Q: 2

Question	Answer	Marks	Guidance
(a)	¹¹ C ₅ × ⁴ C ₁	M1	$^{11}\text{C}_5 \times ^4\text{C}_1$ condone $^{11}\text{P}_5 \times ^4\text{P}_1$ no +, -, × or ÷.
	1848	A1	CAO as exact.
		2	
(b)	Method 1 [Identifying scenarios]		
	[Neither selected =] ${}^{13}C_6$ [= 1716] [Only Jane selected =] ${}^{13}C_5$ [= 1287] [Only Kate selected =] ${}^{13}C_5$ [= 1287]	M1	Either $^{13}C_6$ seen alone or $^{13}C_5$ seen alone or \times 2 (condone $^{13}P_n$, $n = 5,6$).
	[Total =] 1716 + 1287 + 1287	M1	Three correct scenarios only added, accept unsimplified (values may be incorrect).
	4290	A1	
	Method 2 [Total number of selections – selections with Jane and Kate both picked]		
	$^{15}\text{C}_6 \cdot ^{13}\text{C}_4 [= 5005 - 715]$	M1	15 C ₆ – k , k a positive integer < 5005, condone 15 P ₆ .
		M1	$m - {}^{13}\text{C}_4$, m integer > 715, condone $n - {}^{13}\text{P}_4$, $n > 17$ 160.
	4290	A1	
		3	
	***		SC Where the condition of $2(\mathbf{a})$ is also applied in $2(\mathbf{b})$, the final answer is 1512 SC M1 M1 A0 max. The method marks can be earned for the equivalent stages in each method. Method 1 $^4C_1 \times ^9C_5 + ^4C_1 \times ^9C_4 \times 2$ Method 2 $^4C_1 \times ^{11}C_5 - ^4C_1 \times ^9C_3$

 $88.\ 9709_w21_ms_52\ Q{:}\ 4$

Question	Answer	Marks	Guidance
(a)	9! 3!	M1	$\frac{9!}{e!}$, $e = 2, 3$
	60 480	A1	
		2	

Question	Answer	Marks	Guidance
(b)	$\frac{7!}{3!} \times 2 \times 6$	М1	$\frac{7!}{3!} \times k$ seen, k an integer > 0 .
		M1	$\frac{m!}{n!} \times 2 \times q$ $7 \le m \le 9, 1 \le n \le 3, 1 \le q \le 8$ all integers.
		M1	$\frac{m!}{n!} \times p \times 6$ $7 \le m \le 9, 1 \le n \le 3, 1 \le p \le 2$ all integers. (Accept 3P2 for 6)
			If M0 M0 M0 awarded, SC M1 for $t \times 12$, t an integer ≥ 20 , $\frac{5!}{3!}$.
	10 080	A1	Exact value.
	Alternative method for question 4(b)		
	$\frac{{}^{7}P_{2}\times6!\times2}{3!}$	M1	$\frac{6!}{3!} \times k$ seen, k an integer > 0 .
		M1	$\frac{m!}{n!} \times^7 P_2 \times q$ $m = 6.9, 1 \le n \le 3, 1 \le q \le 2$ all integers.
		M1	$\frac{m!}{n!} \times^7 P_r \times 2 m = 6, 9, 1 \leqslant n \leqslant 3, 1 \leqslant r \leqslant 5 \text{ all integers.}$
			If M0 M0 M0 awarded, SC M1 for $t \times 84$, t an integer ≥ 20 , $\frac{5!}{3!}$.
	10 080	A1	Exact value.
Question	Answer	Marks	Guidance
(b)	Alternative method for question 4(b)		
	$\frac{7!}{3!}$ ×4P2	M1	$\frac{7!}{3!} \times k$ seen, k an integer > 0.
		M1	$t \times {}^{4}P_{2}$ or 12, t an integer $\geqslant 20$, $\frac{5!}{3!}$.
		M1	$\frac{m!}{n!} \times 4P2 7 \le m \le 9, 1 \le n \le 3$ all integers.
	10 008	A1	Exact value.
	~~	4	

89. 9709_w21_ms_53 Q: 1

Question		Answer	Marks	Guidance
	²³ C ₁₇		M1	23 C _x or y C ₁₇ or z C ₆ , x, y or z are integers no +, -, × or ÷.
	100947		A1	CAO
	**		2	

90. 9709_m20_ms_52 Q: 1

Question	Answer	Marks	Guidance
	$^{38}C_r$ or $^nC_{34}$	M1	Either expression seen OE, no other terms, condone x1
	³⁸ C ₃₄	A1	Correct unsimplified OE
	73815	A1	If M0, SCB1 ³⁸ C ₃₄ x k, k an integer
		3	

91. $9709 m20 ms_52$ Q: 4

Question	Answer	Marks	Guidance
(a)	R ^^^^^ R 9! 3!6!	М1	9! Alone on numerator, $3! \times k$ or $6! \times k$ on denominator
	= 84	A1	
		2	
(b)	^ (B B B) ^ ^ ^ ^ ^	M1	$\frac{7!}{6!} \times k$ or $7k$ seen, k an integer > 0
	$\frac{7!}{6!} \times \frac{8 \times 7}{2}$	M1	$m \times n(n-1) or m \times {}^{n}C_{2} or m \times {}^{n}P_{2}$, $n=7$, 8 or 9, m an integer > 0
		M1	n = 8 used in above expression
	= 196	A1	
	Alternative for question 4(b)	1	.0,
	[Arrangements, blues together – Arrangements with blues together and reds together =] $\frac{9!}{2!6!} - \frac{8!}{6!}$	M1	9! Seen alone or as numerator with subtraction
	= [252 - 56]	M1	8! Seen alone or as numerator in a second term and no other terms
		M1	All terms divided by 6! x k, k an integer
	= 196	A1	
		4	

92. $9709_s20_ms_51$ Q: 2

Question	Answer	Marks
(a)	6!	M1
	720	A1
		2
(b)	Total number: 9! (30240)	M1
	Number with Ls together = $\frac{8!}{3!}$ (6720)	M1
	Number with Ls not together = $\frac{9!}{3!2!} - \frac{8!}{3!}$	M1
	= 30 240 - 6720	
	23 520	A1
	Alternative method for question 2(b)	
	$\frac{7!}{3!} \times \frac{8 \times 7}{2}$	
	7! × k in numerator, k integer ≥ 1	M1
	$8 \times 7 \times m$ in numerator or $8C2 \times m$, m integer ≥ 1	M1
	3! in denominator	M1
	23 520	A1
		4

93. $9709_s20_ms_51$ Q: 4

Question	Answer	Marks
4	Scenarios: 2P 3V 2G $^{8}C_{2} \times ^{4}C_{2} \times ^{6}C_{3} = 28 \times 6 \times 20 = 3360$ 2P 4V 1G $^{8}C_{2} \times ^{4}C_{1} \times ^{6}C_{4} = 28 \times 4 \times 15 = 1680$ 3P 3V 1G $^{8}C_{3} \times ^{4}C_{1} \times ^{6}C_{3} = 56 \times 4 \times 20 = 4480$ 4P 2V 1G $^{8}C_{4} \times ^{4}C_{1} \times ^{6}C_{2} = 70 \times 4 \times 15 = 4200$ (M1 for $^{8}C_{r} \times ^{4}C_{r} \times ^{6}C_{r}$ with $\sum r = 7$)	M1
	Two unsimplified products correct	В1
	Summing the number of ways for 3 or 4 correct scenarios	M1
	Total: 13 720	A1
		4

94. $9709_s20_ms_52$ Q: 6

Question	Answer	Marks
(a)	<u>8!</u> 3!	M1
	6720	A1
		2

Question	Answer	Marks
(b)	Total number = $\frac{10!}{2!3!}$ (302400) (A)	B1
	With Es together = $\frac{9!}{3!}$ (60480) (B)	B1
	Es not together = their (A) – their (B)	M1
	241920	A1
	Alternative method for question 6(b)	
	$ \frac{\frac{1}{8!} \frac{9 \times 8}{2}}{\frac{9 \times 8}{2}} \times \frac{9 \times 8}{2} $	
	$8! \times k$ in numerator, k integer ≥ 1 , denominator ≥ 1	B1
	$3! \times m$ in denominator, m integer ≥ 1	B1
	Their $\frac{8!}{3!}$ Multiplied by ${}^{9}C_{2}$ (OE) only (no additional terms)	M1
	241920	A1
		4
Question	Answer	Marks
(c)	Scenarios: $E M M M$ ${}^{5}C_{0} = 1$ $E M M M_{-}^{5}C_{1} = 5$ $E M_{-}^{5}C_{2} = 10$	M1
	Summing the number of ways for 2 or 3 correct scenarios	M1
	Total = 16	A1
		3

95. $9709_w20_ms_53$ Q: 3

Question	Answer	Marks	Guidance		
(a)	Scenarios: $6W \ 0M^9 C_6 = 84$ $5W \ 1M^9 C_5 \times ^5 C_1 = 126 \times 5 = 630$ $4W \ 2M^9 C_4 \times ^5 C_2 = 126 \times 10 = 1260$	M1	Correct number of ways for either 5 or 4 women, accept unsimplified		
		М1	Summing the number of ways for 2 or 3 correct scenarios (can be unsimplified), no incorrect scenarios.		
	Total = 1974	A1			
		3			
(b)	Total number of ways = $^{14}C_6$ (3003) Number with sister and brother = $^{12}C_4$ (495) Number required = $^{14}C_6$ -	M1	$^{14}C_6$ – a value		
	$^{12}C_4 = 3003 - 495$	M1	12 C _x or n C ₄ seen on its own or subtracted from <i>their</i> total, $x \le 6$, $n \le 13$		
	2508	A1			
	Alternative method for question 3(b)				
	Number of ways with neither = ${}^{12}C_6 = 924$	M1	¹² C ₆ + a value		
	Number of ways with either brother or sister (not both) = ${}^{12}\text{C}_5 \times 2 \ (= 792 \times 2) = 1584$	M1	$^{12}C_x \times 2$ or $^nC_5 \times 2$ seen on its own or added to <i>their</i> number of ways with neither, $x \le 5$, $n \le 12$		
	Number required = 924 + 1584 = 2508	A1	NO.		
		3			

96. $9709 m19 ms_62$ Q: 7

Question	Answer	Marks	Guidance
(i)	9! 2!3!	MI	9! alone on numerator, 2! and/or 3! on denominator
	= 30240	A1	Exact value, final answer
		2	
(ii)	$A \land \land \land \land \land A$ Arrangements = $\frac{6!}{2!}$ = 360	B1	Final answer
	00	1	
(iii)	$M \wedge M \wedge \wedge \wedge \wedge \wedge \\ = \frac{7!}{3!} \times 7$	M1	7! in numerator, (considering letters not M)
		M1	Division by 3! only (removing repeated As)
	***	M1	Multiply by 7 (positions of M-M)
	= 5880	A1	Exact value, final answer
	Method 2 (choosing letter between Ms)		
	$1 \times \frac{6!}{2!} \times 7 + 4 \times \frac{6!}{3!} \times 7$	M1	6! in sum of 2 expressions $a6! + b6!$
		M1	Multiply by 7 in both expressions (positions of M-M)
	= 2520 + 3360	M1	$\frac{c}{2!} + \frac{d}{3!}$ seen (removing repeated As)
	= 5880	A1	Exact value

Question	Answer	Marks	Guidance
(iii)	Method 3		
	(MAM) ^ ^ ^ ^ = 7!/2! = 2520	M1	7! in numerator (considering 6 letters + block)
	$(MA'M) ^ ^ ^ ^ ^ ^ = 7!/3! \times 4 = 840 \times 4 = 3360$	M1	Division by 2! and 3! seen in different terms
	Total = 2520 + 3360	M1	Summing 5 correct scenarios only
	= 5880	A1	Exact value
		4	
'(iv)	$M A^{=4}C_1 = 4$	B1	Final answer
		1	
(v)	$M ^ : ^4C_2 = 6$ $M M ^ : ^4C_1 = 4$	M1	Either option M M ^ or M ^ ^ correct, accept unsimplified
	M M A: = 1 M A A: = 1 (M A 4C ₁ = 4)	М1	Add 4 or 5 correct scenarios only
	Total = 16	A1	Value must be clearly stated
	Method 2		
	$M M^{5} = {}^{5}C_{1} = 5$	M1	Either option M M ^ or M ^ ^ correct, accept unsimplified
	$M ^{\land \land} = {}^{5}C_{2} = 10$	M1	Adding 2 or 3 correct scenarios only
	M A A = = 1 Total = 16	A1	Value must be clearly stated
		3	

97. 9709_s19_ms_61 Q: 8

Question	Answer	Marks	Guidance
(i)	(°C ₄ =) 126	B1	
		1	
(ii)	⁷ C ₂	B1	$^{7}C_{x}$ or $^{y}C_{2}$ (implied by correct answer) or $^{7}P_{x}$ or $^{7}P_{y}$, seen alone
	= 21	B1	correct answer
	-00	2	

Question	Answer	Marks	Guidance
(iii)	$_{C_{1}}(B_{1}B_{2}B_{3})C_{2}C_{3}C_{4}C_{5}C_{6}$	B1	3! or 6! seen alone or multiplied by k > 1 need not be an integer
	3! × 6! × 7	B1	3! and 6! seen multiplied by k > 1, integer, no division
	= 30240	B1	Exact value
	Alternative method for question 8(iii)		
	C ₁ (B ₁ B ₂ B ₃) C ₂ C ₃ C ₄ C ₅ C ₆	B1	3! or 7! seen alone or multiplied by k > 1 need not be an integer
	3! × 7!	B1	3! and 7! seen multiplied by $k > or = 1$, no division
	= 30240	B1	Exact value
		3	
(iv)	C ₁ _ C ₂ _ C ₃ _ C ₄ _ C ₅ _ C ₆	B1	6! or 4! X 6P2 seen alone or multiplied by k > 1, no division (arrangements of cars)
	$6! \times 5P3 \ or \ 6! \times 5 \times 4 \times 3 \ or \ 6! \ x \ 3! \ x10$	B1	Multiply by 5P3 oe i.e. putting Bs in between 4 of the Cs OR multiply by 3! x n where n = 7, 8, 9, 10 (number of options)
	= 43200	B1	Correct answer
		3	

98. $9709_s19_ms_62~Q:7$

Question	Answer	Marks	Guidance
(a)	${}^{6}C_{3} \times {}^{3}C_{2} \times {}^{1}C_{1}$	M1	$^6C_a \times ^{6-a}C_b \times ^{6-a-b}C_{6-a-b}$ seen oe $^{6-a-b}C_{6-a-b}$ can be implied by 1 or omission, condone use of permutations,
	= 20 × 3	A1	Any correct method seen no addition/additional scenarios
	= 60	A1	Correct answer
	Alternative method for question 7(a)		
	$\frac{{}^{6}P_{6}}{{}^{3}P_{3} \times {}^{2}P_{2} \times {}^{1}P_{1}} = \frac{6!}{3 \times 2!}$	M1	$^{6}P_{6} / (^{n}P_{n} \times k)$ with $3 \ge n > 1$ and $6 \ge k$ an integer ≥ 1 , not $6!/1$
		A1	Correct method with no additional terms
	= 60	A1	Correct answer
		3	
(b)(i)	$\frac{4!}{3!} \times \frac{3!}{2!} \times 2$	M1	A single expression with either $4!/3! \times k$ or $3!/2! \times k$, k a positive integer seen oe (condone 2 identical expressions being added)
		M1	Correctly multiplying <i>their</i> single expression by 2 or 2 identical expressions being added.
	= 24	A1	Correct answer
		3	

Question	Answer	Marks	Guidance
(b)(ii)	Total no of arrangements = $\frac{7!}{2!3!}$ = 420 (A)	B1	Accept unsimplified
	No with 2s together = $\frac{6!}{3!}$ = 120 (B)	B1	Accept unsimplified
	With 2s not together: their (A) – their (B)	M1	Subtraction indicated, possibly by <i>their</i> answer, no additional terms present
	= 300 ways	A1	Exact value www
	Alternative method for question 7(b)(ii)		
	3_7_7_7_8_	~	
	$\frac{5!}{3!} \times \frac{6 \times 5}{2}$	B1	$k \ge 5!$ in numerator, k a positive integer
	3! 2	В1	$m \times 3!$ In denominator, m a positive integer
		M1	Their 5!/3! multiplied by ⁶ C ₂ only (no additional terms)
	= 300 ways	A1	Exact value www
	Y	4	

99. 9709_s19_ms_63 Q: 3

Question	Answer	Marks	Guidance
(i)	9! × 2	B1	9! seen multiplied by $k \ge 1$, no addition
	= 725760	B1	Exact value
		2	
(ii)	Eg (K ₁ K ₂ K ₃ K ₄ K ₅) A A A (U ₁ U ₂) A	B1	2! or 5! seen mult by k > 1, no addition (arranging Us or Ks)
	= 5! × 2! × 6!	B1	6! Seen mult by k > 1, no addition (arranging AAAAKU)
	= 172800	B1	Exact value
		3	

 $100.\ 9709_s19_ms_63\ Q{:}\ 4$

Question	Answer	Marks	Guidance
(i)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	B1	One unsimplified product correct
		M1	Summing the number of ways for 2 or 3 correct scenarios (can be unsimplified), no incorrect scenarios
	Total 672 ways	A1	Correct answer
		3	

Question	Answer	Marks	Guidance	
(ii)	Total number of selections = ${}^{12}C_6 = 924$ (A)	M1	¹² C _x – (subtraction seen), accept unsimplified	
	Selections with males together = ${}^{10}C_4 = 210$ (B)	A1	Correct unsimplified expression	
	Total = $(A) - (B) = 714$	A1	Correct answer	
	Alternative method for question 4(ii)			
	No males + Only male 1 + Only male 2 = ${}^{10}C_6 + {}^{10}C_5 + {}^{10}C_5$	M1	10 C _x + 2 x 10 C _y , $x \neq y$ seen, accept unsimplified	
	= 210 + 252 + 252	A1	Correct unsimplified expression	
	= 714	A1	Correct answer	
	Alternative method for question 4(ii)			
	Pool without male 1 + Pool without male 2 – Pool without either male	M1	$2 x^{11} C_x - {}^{10} C_x$	
	$= {}^{11}C_6 + {}^{11}C_6 - {}^{10}C_6$ = 462 + 462 - 210	A1	Correct unsimplified expression	
	= 714	A1	Correct answer	
		3		

 $101.\ 9709_w19_ms_61\ Q:\ 6$

Question	Answer	Marks	Guidance
(i)	$\frac{9!}{2!} = 181440$	B1	Exact value
		1	
(ii)	Total no of ways = $\frac{12!}{2!4!}$ = 9 979 200 (A)	B1	Accept unevaluated
	With Ss together = $\frac{11!}{4!}$ = 1 663 200 (B)	B1	Accept unevaluated
	With Ss not together = $(B) - (A)$	M1	Correct or $\frac{12!}{m} - \frac{8!}{n}, m, n \text{ integers} > 1$
			m n or their identified total – their identified Ss together
	8 316 000	A1	Exact value
	Alternative method for question 6(ii)		
	_T_E_E_P_L_E_C_H_A_E_	B1	$10! \times k$ in numerator k integer $\geqslant 1$
	$\frac{10!}{4!} \times \frac{11 \times 10}{2!}$	B1	$4! \times k$ in numerator k integer $\geqslant 1$
	$\frac{\textit{their} 10!}{\textit{their} 4!} \times {}^{11}\text{C}_2 \text{ or } {}^{11}\text{P}_2$	М1	OE
	8 316 000	A1	Exact value
		4	70.

Question	Answer	Marks	Guidance
(iii)	SEEE:1	M1	${}^{6}C_{x}$ seen alone or times $K > 1$
	$\begin{array}{lll} SEE_: & ^{6}C_{1} = 6 \\ SE_: & ^{6}C_{2} = 15 \\ S__: & ^{6}C_{3} = 20 \end{array}$	B1	⁶ C₃ or ⁶ C₂ or ⁶ C₁ alone
	Add 3 or 4 correct scenarios	M1	No extras
	Total = 42	A1	
	0.0	4	

102. 9709_w19_ms_63 Q: 2

Question	Answer	Marks	Guidance
(i)	$\frac{9!}{2!3!}$ = 30240	B1	9! Divided by at least one of 2! or 3!
		B1	Exact value
		2	
(ii)	DR: $\frac{7!}{2!2!}$ = 1260 DO: $\frac{7!}{3!}$ = 840	B1	7! Seen alone or as numerator in a term, can be multiplied not + or –
		B1	One term correct, unsimplified
	Total = 2100	B1	Final answer
		3	

 $103.\ 9709_w19_ms_63\ Q:\ 3$

Question	Answer	Marks	Guidance
(i)	$3A 2D 2M : {}^{6}C_{3} \times {}^{5}C_{2} \times {}^{4}C_{2} (= 1200)$ $4A 2D 1M : {}^{6}C_{4} \times {}^{5}C_{2} \times {}^{4}C_{1} (= 600)$ $3A 3D 1M : {}^{6}C_{3} \times {}^{5}C_{3} \times {}^{4}C_{1} (= 800)$	M1	${}^{6}C_{x} \times {}^{5}C_{y} \times {}^{4}C_{z}, x + y + z = 7$
		A1	2 correct products, allow unsimplified
		M1	Summing their totals for 3 correct scenarios only
	Total = 2600	A1	Correct answer SC1 ${}^{6}C_{3} \times {}^{5}C_{2} \times {}^{4}C_{1} \times {}^{9}C_{1} = 7200$
		4	

Question	Answer	Marks	Guidance
(ii)	$^{7}C_{4} \times 1$	B1	⁷ C ₃ or ⁷ C ₄ seen anywhere
	35	B1	
		2	10

 $104.\ 9709_m18_ms_62\ Q:\ 2$

Question	Answer	Marks	Guidance
(i)	1 L: ⁶ C ₂ = 15	B1	
		1	O
(ii)	No L: ${}^{6}C_{3} = 20$ (1 L: ${}^{6}C_{2} = 15$)	M1	Either 0L or 2L correct unsimplified
	2 L: ⁶ C ₁ = 6	M1	Summing the 3 correct scenarios
	Total = 41	A1	
		3	

105. 9709_m18_ms_62 Q: 6

Question	Answer	Marks	Guidance
(i)	$3! \times \frac{4!}{3!} \times 2$	M1	3! oe seen multiplied by integer ≥ 1, no addition
	3!	M1	4!/3! oe seen multiplied by integer > 1, no addition
	= 48	A1	
		3	
(ii)	EITHER:	B1	7!/3! –
	Even = Total number of arrangements - Odd numbers = $7!/3! - 3 \times \frac{6 \times 5 \times 4 \times 3 \times 2 \times 1}{3!} = (7!/3! - 6!/2!)$	B1	6!/2! OE
	3!		
	= 480	B1	
	OR:	B1	No. ending in 8 or no. ending in 6 correct unsimplified
	No of arrangements ending in 8: $\frac{6!}{3!}$		
	No ending in 6: 6!/2!	B1	Both correct and added unsimplified
	Total: $\frac{6!}{3!} + 6!/2 = 120 + 360 = 480$	B1	
		3	

 $106.\ 9709_s18_ms_61\ Q:\ 7$

Question	Answer	Marks	Guidance
(i)	$\frac{9!}{2!2!} = 90720$	B1	Must see 90720
		1	
(ii)	Method 1 ↑ * * * * * A	В1	5! seen multiplied (arrangement of consonants allowing repeats)
	No. arrangements of consonants × ways of inserting vowels =	B1	$^6\text{P}_4$ oe (i.e. $6 \times 5 \times 4 \times 3$, $^6C_4 \times 4!$) seen mult (allowing repeats) no extra terms
	$ \begin{array}{c c} \frac{5!}{2!} \\ \times \frac{{}^{6}P_{4}}{2!} \end{array} $	В1	Dividing by at least one 2! (removing at least one set of repeats)
	Answer $\frac{^6P_4}{2!} \times \frac{5}{2} = 10800$	B1	Correct final answer
		4	
(iii)	$^{5}C_{3} = 10$	M1	5C_x or 5P_x seen alone, $x = 2$ or 3
		A1	Correct final answer not from ⁵ C ₂
		2	

Question	Answer	Marks	Guidance
(iv)	Method 1 Considering separate groups	M1	Considering two scenarios of MME or EEM or MMEE with attempt, may be probs or perms
	MME** = ${}^{5}C_{2}$ = 10 MEE** = ${}^{5}C_{2}$ = 10 MMEE* = ${}^{3}C_{1}$ = 5	M1	Summing three appropriate scenarios from the four need 5C_x seen in all of them
	$ME^{***} = {}^{5}C_{3} = 10 \text{ see (iii)} \text{ Total} = 35$	A1	Correct final answer
	Method 2 Considering criteria are met if ME are chosen	M1	$^{7}C_{x}$ only seen, no other terms
		M1	^x C ₃ only seen, no other terms
	ME *** = ${}^{7}C_{3}$ = 35	A1	Correct final answer
		3	

107. 9709_s18_ms_62 Q: 6

Question	Answer	Marks	Guidance
(a)(i)	(AAAIU) * * * * Arrangements of vowels/repeats × arrangements of (consonants & vowel group) =	M1	$k \times 5!$ (k is an integer, $k \ge 1$)
	5!×5! 3!	M1	$\frac{m}{3}$! (<i>m</i> is an integer, $m \ge 1$) Both Ms can only be awarded if expression is fully correct
	= 2400	A1	Correct answer
		3	
(a)(ii)	E.g. R * * * T * * * L . Arrangements of consonants RL, RS, SL = ${}^{3}P_{2}$ = 6 Arrangements of remaining letters = $\frac{6!}{3!}$ = 120	M1	$k \times \frac{6!}{3!}$ or $k \times {}^3P_2$ or $k \times {}^3C_2$ or $k \times 3!$ or $k \times 3 \times 2$ (k is an integer, $k \ge 1$), no irrelevant addition
	Total 120 × 6	M1	Correct unsimplified expression or $\frac{6!}{3!} \times {}^{3}C_{2}$
	= 720 ways	A1	Correct answer
		3	

Question	Answer	Marks	Guidance
i(b)		M1	Multiply 3 combinations, ${}^2C_x \times {}^8C_y \times {}^4C_z$. Accept ${}^2C_1 = 2$ etc.
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	A1	3 or more options correct unsimplified
	$\begin{bmatrix} 2 & 0 & 2 & = 1 \times 1 \times^4 C_2 = 6 \\ 1 & 0 & 3 & = 2 \times 1 \times 4 = 8 \end{bmatrix}$	M1	Summing their values of 4 or 5 legitimate scenarios (no extra scenarios)
	Total = 366 ways	A1	Correct answer
	Method 2 14C ₄ – (2N2R or 1N3R or 4R or 3R1B or 2R2B or 1R3B or 4B)	M1	$^{\rm c14}{ m C_4}-k'$ seen, k an integer from an expression containing $^{\rm 8}{ m C_x}$
	$\boxed{1001 - (1 \times ^8 \text{C}_2 + 2 \times ^8 \text{C}_3 + ^8 \text{C}_4 + ^8 \text{C}_3 \times 4 + ^8 \text{C}_2 \times ^4 \text{C}_2 + 8 \times 4 + 1)}$	A1	4 or more 'subtraction' options correct unsimplified, may be in a list
	1001 - (28 + 112 + 70 + 224 + 168 + 32 + 1)	М1	Their ¹⁴ C ₄ – [their values of 6 or more legitimate scenarios] (no extra scenarios, condone omission of final bracket)
	= 366	A1	Correct answer
		4	

 $108.\ 9709_s18_ms_63\ Q{:}\ 7$

Question	Answer	Marks	Guidance		
(i)	****E***	M1	Mult by 8! or ⁸ P ₈ oe (arrangements ignoring repeats)		
	Other letters arranged in $\frac{8!}{2!3!}$				
		A1	Correct final answer www		
	= 3360 ways				
	OR .	M1	Correct numerator (161 280)		
	$\frac{8 \times 7 \times 6 \times 5 \times 4 \times 4 \times 3 \times 2 \times 1}{4!2!} = 3360 \text{ ways}$	A1	Correct final answer www		
	Total:	2			
(ii)	* * * * *	M1	k mult by 6C_4 or 6P_4 oe (ways to insert Es ignoring repeats), k can = 1		
	Arrangements other letters × ways Es inserted		or k mult by $\frac{5!}{2!}$		
	$= \frac{5!}{2!} \times {}^{6}C_{4} \left(\frac{5!}{2!} \times \frac{{}^{6}P_{4}}{4!} \right)$	M1	Correct unsimplified expression or $\frac{5!}{2!} \times {}^6P_4$		
	= 900 ways	A1	Correct answer		
	OR Total no of ways – no of ways with Es touching 9!/(4! × 2!) – or 7 560 –	M1	7560 unsimplified – k		
	$\frac{6!}{2!} + {}^{6}P_{2} \times \frac{5!}{2!} + \frac{{}^{6}P_{2}}{2!} \times \frac{5!}{2!} + \frac{{}^{6}P_{3}}{2! \times \frac{5!}{2!}}$ $= 360 + 1800 + 900 + 3600 = 6660$	M1	Attempting to find four ways of Es touching (4 Es, 3Es and a single, 2 lots of 2 Es, 2 Es and 2 singles)		
	7 560 – 6 660 = 900	A1	Correct answer		

Question	Answer	Marks	Guidance
(ii)	OR Adding the number of ways with the first E in the 1 st (E ₁), 2 nd (E ₂) or 3 rd (E ₃) position. $\frac{5!}{2!} (E_1 + E_2 + E_3) \text{ where } E_1 = 10, E_2 = 4, E_3 = 1$		For any values for E_1 , E_2 and E_3
	$\frac{2!}{2!} (E_1 + E_2 + E_3) \text{where } E_1 = 10, E_2 = 4, E_3 = 1$ $\frac{5!}{2!} (E_1 + E_2 + E_3)$	M1	For any two correct values of E_1 , E_2 and E_3
	600 + 240 + 60 = 900	A1	Correct answer
	Total:	3	
(iii)	EENN* in 3 ways	B1	Numerical value must be stated
	Total:	1	

Question	Answer	Marks	Guidance
(iv)	EE *** with no N: 1 way	M1	Identifying the three different scenarios of EE, EEE or EEEE
	EEN** 3C2 or listing 3 ways EENN* 3 ways from (iii)	A1	Total no of ways with two Es (7 or 3 + 3 + 1)
	EEE** with no N: 3 ways EEEN* 3 ways EEENN 1 way	A1	Total no. of ways with 3 Es (7)
	EEEE* no N 3 ways EEEEN 1 way Total 18 ways	A1	Correct answer stated
	Method List containing ways with 2Es, 3Es and 4Es	M1	At least 1 option listed for each of EE^^^, EEE^^, EEEE^
	List containing at least 8 correct different ways List of all 18 correct ways	A1	Ignore repeated options
	Total 18	A1	Ignore repeated/incorrect options
		A1	Correct answer stated
	Total:	4	

 $109.\ 9709_w18_ms_61\ Q{:}\ 1$

Question	Answer	Marks	Guidance
	$^{9}C_{4} \times ^{5}C_{3} \times ^{2}C_{2}$	B1	⁹ C ₄ or ⁹ C ₃ or ⁹ C ₂ seen (1st group)
	=126 × 10 × 1	B1	^{5 or 7} C ₃ or ^{6 or 7} C ₄ or ^{6 or 5} C ₂ times an integer (2nd group)
	=1260	B1	Correct answer
		3	101

 $110.\ 9709_w18_ms_61\ Q:\ 3$

Question	Answer	Marks	Guidance
(i)	Scenarios are: $4V + 1C + 1DB$: $^{11}C_4 \times ^5C_1 \times ^4C_1$	M1	11 C _a × 5 C _b × 4 C _c , $a+b+c=6$,
		B1	2 correct unsimplified options
	6600 + 3300 + 2310	M1	Add 2 or 3 correct scenarios only
	= 12210	A1	Correct answer
	0.0	4	
(ii)	4! × 3!	M1	k multiplied by 3! or 4!, k an integer ≥ 1
	_	A1	Correct unsimplified expression
	= 144	A1	Correct answer
	***	3	

111. 9709_w18_ms_62 Q: 4

Question	Answer	Marks	Guidance
(i)	5! × 6! ×2	B1	k×5! or m ×6! (k , m integer, k , $m \ge 1$), no inappropriate addition
		B1	$n \times 5! \times 6!$ (<i>n</i> integer, $n \ge 1$), no inappropriate addition
	= 172800	B1	Correct final answer, isw rounding (www scores B3) All marks based on their final answer
		3	

Question	Answer	Marks	Guidance
(ii)	G G G G G No. ways girls placed × No. ways boys placed in gaps =	M1	$k \times 6!$ or $k \times {}^{7}P_{5}$ (k is an integer, $k \ge 1$) no inappropriate add. (${}^{7}P_{5} \equiv 7 \times 6 \times 5 \times 4 \times 3$ or ${}^{7}C_{5} \times 5!$)
	$6! \times {}^{7}P_{5}$	M1	Correct unsimplified expression
	= 1814400	A1	Correct exact final answer (ignore subsequent rounding)
		3	

$$PP' = \frac{2 \times 9}{2} = 9$$

$$SS' = \frac{4 \times 7}{2} = 14$$

$$II' = \frac{4 \times 7}{2} = 14$$

Total number of ways = $\frac{10 \times 11}{2} = 55$

Number of ways of letters repeating = 55 - (9 + 14 + 14 + 5) = 13P(Same) = $\frac{13}{55}$

55
M1 17C₂ seen as the denominator of fraction (no extra terms) allow unsimplified
M1 1 – sum of 4 appropriate scenarios
A1 Correct final answer

112. $9709 w18 ms_63$ Q: 1

Question	Answer	Marks	Guidance
	Method 1		
	M M M M	M1	$k \times 5!$ (120) or $k \times 6P2$ (30), k is an integer $\geqslant 1$,
	No. ways men placed × No. ways women placed in gaps = $5! \times {}^6P_2$	M1	Correct unsimplified expression
	= 3600	A1	Correct answer
	Method 2		
	Number with women together = 6! × 2 (1440) Total number of arrangements = 7! (5040)	M1	$6! \times 2$ or $7! - k$ seen, k is an integer $\geqslant 1$
	Number with women not together = $7! - 6! \times 2$	М1	Correct unsimplified expression
	= 3600	A1	Correct answer
		3	

113. 9709_m17_ms_62 Q: 5

Question	Answer	Marks	Guidance
(i)	$^{12}C_{1} + ^{12}C_{3} + ^{12}C_{5} + ^{12}C_{7} + ^{12}C_{9} + ^{12}C_{11}$	M1	Summing at least 4 ${}^{12}C_x$ combinations with $x = \text{odd numbers}$
		A1	Correct unsimplified answer (can be implied by final answer)
	= 2048	A1	Correct answer
	Total:	3	
(ii)	$7! \times {}^8P_4$	B1	7! seen alone or multiplied only (cupcakes ordered)
		M1	multiplying by ⁸ P ₄ o.e (placing brownies)
	= 8467200	A1	correct answer
	Total:	3	
(iii)	9! / (6! × 2!)	B1	9! oe seen alone or as numerator
		M1	dividing by at least one of 6!,2! (removing repeated shortbread or gingerbread biscuits) ignore 4! if present
	= 252	A1	correct answer
	Total:	3	

$114.\ 9709_s17_ms_61\ Q{:}\ 7$

Question					Answer				Marks	Guidance			
(a)	EITHER: e.g. xxxxx =5! for the other children											(B1	5! OE seen alone or mult by integer $k \ge 1$, no addition
	Put y	in 6 ways	s, then 5	then 4	for the youngest	childre	en		B1	Mult by 6P3 OE			
	Answ	er 5! × 61	P3 = 144	100					B1)	Correct answer			
	OR: total -	- 3 tog – 2	2 tog = 8	3! – 6!3	$3! - 6! \times 2 \times 5 \times 3$	= 144	00		(B1	$8! - 6! \times k \geqslant 1 \text{seen}$			
									B1	6!3! or $6! \times 2 \times 5 \times 3$ seen subtracted			
									B1)	Correct answer			
								Total:	3				
(b)	D 2	W 2	M 1	=	6C2 × 4C2 × 1	=	90		B1	One correct unsimplified option			
	3	1	1	=	6C3 × 4 × 1	=	80		M1	Summing 2 or more 3-factor options which can contain perms or 3 factors added. The 1 can be implied			
	1	3	1	=	6 × 4C3 × 1	=	24		M1	Summing the correct 3 unsimplified outcomes only			
	Tota	l=194 wa	ıys						A1				
								Total:	4	*O			

Question					Answer				Marks	Guidance
(c)	C 2	D 1	S 1	=	26 C ₂ ×9×5×4!	=	351 000		M1	summing 2 or more options of the form (2 1 1), (1 2 1), (1 1 2), can have perms, can be added
	1	2	1	=	$26 \times {}^{9}C_{2} \times 5 \times 4!$	=	112 320	1	M1	4 relevant products seen excluding 4! e.g. $26 \times 9 \times 8 \times 5$ or $26 \times {}^9P_2 \times 5$ for 2nd outcome, condone $26 \times 9 \times 5 \times 37$ as being relevant
	1	1	2	=	$26 \times 9 \times {}^5C_2 \times 4!$	=	56 160		М1	mult all terms by 4! or 4!/2!
	Tota	al = 51	9 480						A1	
							_`(Total:	4	

$115.\ 9709_s17_ms_62\ Q:\ 6$

(i)	EITHER: Route 1 A********* A in 9! / 2!2!5! = 756 ways	(*M1	Considering AA and BB options with values
	<i>B</i> *********** in 9! / 4!5! = 126 ways	A1	Any one option correct
	756 + 126	DM1	Summing their AA and BB outcomes only
	Total = 882 ways	A1)	

Question	Answer	Marks	Guidance
	<i>OR1</i> : Route 2 $A^{********}A$ in ${}^{9}C_{5} \times {}^{4}C_{2} = 756$ ways	(M1	Considering AA and BB options with values
	$B^{********}B$ in ${}^{9}C_{4} \times {}^{5}C_{5} = 126$ ways	A1	Any one option correct
	756 + 126	DM1	Summing their AA and BB outcomes only
	Total = 882	A1)	
	Total:	4	

Question	Answer	Marks	Guidance
(ii)	EITHER: (The subtraction method) As together, no restrictions 8! / 2!5! = 168	(*M1	Considering all As together – 8! seen alone or as numerator – condone × 4! for thinking A's not identical
	As together and Bs together $7! / 5! = 42$	M1	Considering all As together and all Bs together – 7! seen alone or numerator
		M1	Removing repeated Bs or Cs – Dividing by 5! either expression or 2! 1st expression only – OE
	Total 168 – 42	DM1	Subt their 42 from their 168 (dependent upon first M being awarded)
	= 126	A1)	
	OR1: As together, no restrictions ${}^{8}C_{5} \times {}^{3}C_{1} = 168$	(*M1	$^{8}C_{5}$ seen alone or multiplied
		M1	⁷ C₅ seen alone or multiplied
	As together and Bs together ${}^{7}C_{5}$ x ${}^{2}C_{1}$ = 42	M1	First expression x 3C_1 or second expression x 2C_1
	Total 168 – 42	DM1	Subt their 42 from their 168 (dependent upon first M being awarded)
	= 126	A1)	
	OR2: (The intersperse method)	(M1	Considering all "As together" with Cs – Mult by 6!
	(AAAA)CCCCC then intersperse B and another B	M1	Removing repeated Cs – Dividing by 5!– [Mult by 6 implies M2]
		*M1	Considering positions for Bs – Mult by 7P2 oe –
Question	Answer	Marks	Guidance
	6! ×7×6÷ 2	DM1	Dividing by 2! Oe – removing repeated Bs (dependent upon 3rd M being awarded)
	= 126	A1)	
	Total:	5	

116. 9709_w17_ms_61 Q: 6

Question	Answer	Marks	Guidance
(a)(i)	⁴⁰ P ₅	M1	40 P _x or y P ₅ oe seen, can be mult by $k \ge 1$
	= 78 960 960	A1	
		2	
(a)(ii)	not front row e.g. WEJ** in 3×3! = 18 ways	B1	3! seen mult by $k \geqslant 1$
	7 rows in 7 × 18= 126 ways	B1	mult by 7
	front row: e.g. *MA** in $4 \times 2 = 8$ ways	M1	attempt at front row arrangements and multiplying by the 7 other rows arrangements, need not be correct
	Total 126×8 = 1008	A1	
		4	
(b)	EITHER: e.g. *R** in *C ₃ ways = 56 ways *L** in *C ₃ = 56 ways	(M1	Considering either R or L only in team
	**** in ⁸ C ₄ = 70 ways	M1*	Considering neither in team
		DM1	summing 3 scenarios
	Total 182 ways	A1)	20)
	OR1: No restrictions ¹⁰ C ₄ = 210 ways	(M1	$^{10}\mathrm{C_4}$ – , Considering no restrictions with subtraction
	RL = ⁸ C ₂ = 28	M1*	Considering both in team
	210 – 28	DM1	subt
	= 182 ways	A1)	

Question	Answer	Marks	Guidance
(b)	OR2: R out in ${}^{9}C_{4} = 126$ ways L out in ${}^{9}C_{4} = 126$ ways	(M1	Considering either R out or L out
	Both out in ${}^8C_4 = 70$	M1*	Considering both out
	•	DM1	Summing 2 scenarios and subtracting 1 scenario
	126 + 126 - 70 = 182 ways.	A1)	
	0.0	4	

117. 9709_w17_ms_62 Q: 6

Question	Answer	Marks	Guidance
(a)(i)	EITHER: 3**, 6**, 6**, 8**	(M1	5P_2 or $^5C_2 \times 2!$ or 5×4 OE (considering final 2 digits)
	options $4 \times 5 \times 4 = 80$	M1	Mult by 4 or summing 4 options (considering first digit)
		A1)	Correct final answer
	<i>OR:</i> Total number of values: $6 \times 5 \times 4 = 120$	(M1	Calculating total number of values (with subtraction seen)
	Number of values less than 300: $2 \times 5 \times 4 = 40$	M1	Calculating number of unwanted values
	Number of evens = $120 - 40 = 80$	A1)	Correct final answer
		3	

Question	Answer	Marks	Guidance
(a)(ii)	3**, 4**, 6**, 8** <i>EITHER</i> : options 4 × 6 × 4 (last)	(M1	6 linked to considering middle digit e.g. multiplied or in list
		M1	Multiply an integer by 4 × 4 (condone × 16) (No additional figures present for both M's to be awarded)
	= 96	A1)	
	OR: Total number of values $4 \times 6 \times 6 = 144$	(M1	Calculating total number of values (with subtraction seen)
	Number of odd values $4 \times 6 \times 2 = 48$	M1	Calculating number of unwanted values
	Number of evens = $144 - 48 = 96$	A1)	
		3	
(b)(i)	252	B1	
		1	
Question	Answer	Marks	Guidance
(b)(ii)	B (6)G(4)		
	$\begin{bmatrix} 5 & 0 \text{ in } {}^{6}C_{5}(\times^{4}C_{0}) = 6 \times 1 = 6 \\ 4 & 1 \text{ in } {}^{6}C_{4} \times^{4}C_{1} = 15 \times 4 = 60 \end{bmatrix}$	M1	Multiplying 2 combinations ${}^6\mathrm{C}_q \times {}^4\mathrm{C}_r$, $q+r=5$, or ${}^6\mathrm{C}_5$ seen alone
	2 2: 60 40 20 6 120	M1	Summing 2 or 3 appropriate outcomes, involving perm/comb, no extra outcomes.
	Total = 186 ways	A1	10
		3	

118. 9709_m16_ms_62 Q: 6

(i)	¹⁵ P ₅ = 360360	M1 A1	2	oe, can be implied Not ¹⁵ C ₅ Correct answer
(ii)	$5 \times 10 \times 4 \times 9 \times 3$ $= 5400$	M1 A1	2	Mult 5 numbers Correct answer
(iii)	M(5) F(10) 3 2 = ${}^{5}C_{3} \times {}^{10}C_{2} = 450$ ways 4 1 = ${}^{5}C_{4} \times {}^{10}C_{1} = 50$ 5 0 = ${}^{5}C_{5} \times {}^{10}C_{0} = 1$ Total = 501 ways	M1 M1	3	Mult 2 combs, ${}^5C_x \times {}^{10}C_y$ Summing 2 or 3 two-factor options, x + y = 5 Correct answer
(iv)	(Couple) M(4) F(9) ManWife + 3 $0 = {}^{4}C_{3} \times {}^{9}C_{0} = 4$ ManWife + 2 $1 = {}^{4}C_{2} \times {}^{9}C_{1} = 54$ Total = 58	M1 M1 A1	3	Mult 2 combs ${}^{4}C_{x}$ and ${}^{9}C_{y}$ Summing both options $x + y = 3$, gender correct Correct answer

119. 9709_s16_ms_61 Q: 6

$= 648$ OR $900 - 28 \times 9 = 648$ (ii) $(7in \ 1 \times 8 \times 4 = 32 \text{ ways}$ M1 $8in \ 1 \times 8 \times 5 = 40$ $9in \ 1 \times 8 \times 4 = 32$ Total 104 ways A1 [4] (b) $R(6) T(5) D(4)$	Listing #s starting with 7 or 9 and ending odd
(ii) $(7$ in $1 \times 8 \times 4 = 32$ ways M1 8 in $1 \times 8 \times 5 = 40$ 9 in $1 \times 8 \times 4 = 32$ Total 104 ways A1 [4]	
8 in $1 \times 8 \times 5 = 40$ 9 in $1 \times 8 \times 4 = 32$ M1 Total 104 ways A1 [4]	
9 in $1 \times 8 \times 4 = 32$ Total 104 ways A1 [4]	
(b) P(6) T(5) D(4)	
(b) $ \begin{array}{c} R(6) T(5) D(4) \\ 2 2 3 = {}^{6}C_{2} \times {}^{5}C_{2} \times {}^{4}C_{3} = 600 \\ 2 3 2 = {}^{6}C_{2} \times {}^{5}C_{3} \times {}^{4}C_{2} = 900 \\ 3 2 2 = {}^{6}C_{3} \times {}^{5}C_{2} \times {}^{4}C_{2} = 1200 \\ \end{array} $ $ \begin{array}{c} M1 \\ M1 \\ A1 \\ A1 \\ A1 \\ A1 \end{array} $	Mult 3 combs, ${}^{6}C_{x} \times {}^{5}C_{y} \times {}^{4}C_{z}$ Summing 2 or 3 three-factor outcomes can be perms, $+$ instead of \times 2 options correct unsimplified

 $120.\ 9709_s16_ms_62\ Q\hbox{: }7$

7 (a) (i)	$\frac{10!}{2!3!} = 302400$	B1 [1]	Exact value only, isw rounding
(ii)	e.g. *W*****W*, **W*****W, W******W**	M1	8! Seen mult or alone. Cannot be embedded (arrangements of other 8 letters).

(11)	W*****W**	1,11	embedded (arrangements of other 8 letters).
	$\frac{8!}{3!} \times 3$ (for the Ws)	M1	Dividing by 3! (removing repeated L's)
	3!	M1	Mult by 3 (different W positions) may be sum of 3 terms
	= 20160	A1 [4]	outh of 5 terms
(b)	S(5) A(7) C(4) 1 3 2: $5 \times^7 C_3 \times^4 C_2 = 1050$ 1 4 1: $5 \times^7 C_4 \times 4 = 700$	M1	Mult 3 combinations, 5C_x , 7C_y , 4C_z (not 5 x 7 x 4)
•	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A1	2 correct options unsimplified
	(Outcomes : Options)	M1	Summing only 3 or 4 correct outcomes involving combs or perms
	Total = 3990	A1 [4]	

 $121.\ 9709_s16_ms_63\ Q:\ 6$

Qu	Answer	Ma	arks	Guidance
(i)	7560 ways	B1	[1]	
(ii)	RxxxxxxxG in $\frac{7!}{4!}$	B1		7! alone seen in num or 4! alone in denom Must be in a fraction. $\frac{7 \times 2}{4 \times 2}$ gets full marks
	= 210 ways	B1	[2]	
(iii)	eg EEEExxxxx in $\frac{6!}{2!}$	B1		6! or 5! \times 6 seen in numerator or on own Can be 6! \times <i>k</i> but not 6! \pm <i>k</i>
	= 360 ways	B1	[2]	.0,
(iv)	1 R eg RVG or RVN or RGN = 3	B 1	[1]	10
(v)	no Rs eg VGN or 3C3 ways = 1 2 Rs eg RRV or 3C1 ways = 3	M1		Summing at least 2 options for R
	Total = 7	A1 A1	[3]	Correct outcome for no Rs or 2 Rs – evaluated

 $122.\ 9709_w16_ms_61\ Q\hbox{:}\ 5$

	(a)	e.g. P*N*P*P*L	M1		Mult by 5! in num
		$= \frac{5!}{3!} \times \frac{^{6}P_{4}}{2!}$ $= 3600$	M1 M1 A1	[4]	Dividing by 3! or 2! Mult by ⁶ P ₄ oe
(b)	(i)	$^{7}C_{5} \times ^{5}C_{4} \times ^{2}C_{1} \times ^{2}C_{1}$	M1		Mult 4 combs of which three
		= 420	A1	[2]	are correct
	(ii)	both in team	M1		Evaluating both in team and
		${}^{6}C_{4} \times {}^{4}C_{3} \times 2 \times 2 = 240$	M1		subtracting from (i) 240 seen can be unsimplified ft their 420, their 240
		420 - 240 = 180 ways	A1		It then 420, then 240
		OR Bat in bowl out + bowl in bat out + both out	M1		summing 2 or 3 options not both in team
		$= {}^{6}C_{4} \times {}^{4}C_{3} \times 2 \times 2 + {}^{6}C_{5} \times {}^{4}C_{3} \times 2 \times 2 + {}^{6}C_{5} \times {}^{4}C_{4} \times 2 \times 2$	A1		2 or 3 options correct unsimplified
		= 60 + 96 + 24 = 180 ways	A1		Correct ans from correct working
		OR			5
		Bat in bowl out + bat out = $60 + {}^{6}C_{5} \times {}^{5}C_{4} \times 2 \times 2 = 60 + 120 = 180$ ways	M1 A1 A1	[3]	As above, or bowl in bat out + bowl out

 $123.\ 9709_w16_ms_62\ Q:\ 6$

(i)	e.g. (OAEE)(CPNHGN) or cv $\frac{4!}{2!} \times \frac{6!}{2!} \times 2 = 8640$	M1 M1 A1	[3]	4!/2! or 6!/2! seen anywhere All multiplied by 2 oe
(ii)	First Method Total ways = 10!/2!2! = 907200 EE together in 9!/2! ways = 181440 EE not together = 907200 - 181440 = 725760 OR Second Method	B1 M1 M1 A1	[4]	Total ways together correct EE together attempt alone Considering total – EE together
	CAP N H G N O A in 8!/2! ways	B1		8!/2! Seen
	Insert E in 9 ways	M1		Interspersing an E, x n where n=7,8,9. Condone additional factors.
	Insert 2nd E in 8 ways, \div 2 Total = $8!/2! \times 9 \times 8 \div 2 = 725760$	M1 A1		additional factors. Mult by $9 \times 8(\div 2)$, ${}^{9}C_{2}$ or ${}^{9}P_{2}$ only be
(iii)	First Method EN** in ⁶ C ₂ ways	M1 M1		$^{6}C_{x}$ or $^{y}C_{2}$ seen alone or mult by $k > 1$, x<6, y>2 $(1x1x)^{6}C_{2}$ seen strictly alone or added to their EENN only
	= 15 different ways	A1		ELIVIN OILLY
	EENN in 1 way Total 16 ways OR	B1 A1	[5]	90.
	Second Method Listing with at least 8 different correct options Listing all correct options Total = 15 different ways	M1 M1		Value stated or implied by final answer
	Total = 15 different ways EENN in 1 way Total 16 ways	A1 B1 A1		correct value stated
	00			Award 16 SRB2 if no method is present

124. 9709_w16_ms_63 Q: 1

total ways ${}^{10}C_5 = 252$	M1		$^{10}C_5 - \dots$ or $252 - \dots$
MW together e.g. (MW)*** in 8C_3 ways = 56 MW not together = 252 - 56 = 196 ways	B1 A1	[3]	252 and 56 seen, may be unsimplified
OR 1 $2 {}^{8}C_{4} + {}^{8}C_{5}$ $2 {}^{8}C_{4} = 2x70 = 140; {}^{8}C_{5} = 56$ $2 {}^{8}C_{4} + {}^{8}C_{5} = 196$	M1 B1 A1	[-]	2 ⁿ C ₄ + ⁿ C ₅ 140 and 56 seen may be unsimplified
OR 2 $2^{9}C_{5}^{-8}C_{5}$ $2^{9}C_{5}^{-8}C_{5} = 2 \times 126 = 252; {}^{8}C_{5}^{-8}C_{5}^{-8}C_{5}^{-8}C_{5}^{-8}C_{5}^{-8}C_{5}^{-8}$	M1 B1 A1		2 °C ₅ 252 and 56 seen, may be unsimplified

125. $9709_{\text{w}}16_{\text{ms}}63$ Q: 3

(i)	e.g. **5 in ${}^{3}P_{2}$ ways = 6	M1		Recognising ends in 5 or 7, can be implied
	**7 in ${}^{3}P_{2} = 6$ Total 12 AG	M1 A1	[3]	Summing ends in 5 + ends in 7 oe Correct answer following legit working
	OR listing 457, 547, 467, 647, 567, 657, 475, 745 465, 645, 675, 765	M1 M1		Listing at least 5 different numbers ending in 5 Listing at least 5 different numbers ending in
	Total 12 AG	A1		7
(ii)	1 digit in 2 ways 2 digits in *5 or *7 = ${}^{3}P_{1} \times 2 = 6$	M1		Consider at least 3 options with different number of digits. If no working, must be 3 or 4 from 2, 6, 12, 12
	4 digits in ***5 or ***7 = ${}^{3}P_{3} \times 2 = 12$ Total ways = 32	A1 A1	[3]	One option correct from 1, 2 or 4 digits

126. 9709_s15_ms_61 Q: 7

(a) (i)	9! 2!2!3!	В1	Dividing by 2!2!3!
	= 15120 ways	B1 [2]	Correct answer

-		-	
(ii)	******* in $\frac{8!}{2!2!3!}$ = 1680 ways	BI	Correct ways end in 3
	*******7 in $\frac{8!}{2!3!}$ = 3360 ways	B1	Correct ways end in 7
	Total even		
	= 15120 - 1680 - 3360	M1	Finding odd and subt from 15120
			or their (i)
	= 10080 ways	A1 [4]	Correct answer
	OR		
	********2 in 8!/2!3! = 3360 ways	B1	One correct way end in even
	********6 in 8!/2!2!3! = 1680 ways	B1	correct way end in another even
	******** in 8!/2!2!2! = 5040ways	M1	Summing 2 or 3 ways
	Total = 10080 ways	A1	Correct answer
	OR		
**	"15120" $\times 6/9 = 10080$	M2	Mult their (i) by 2/3 oe
****		A2	Correct answer
(b)	T(3) S(6) G(14)		
	1 1 3 in $3 \times 6 \times {}^{14}C_3 = 6552$	M1	Mult 3 (combinations) together
	1 3 1 in $3 \times {}^{6}C_{3} \times 14 = 840$		assume $6 = {}^{6}C_{1}$ etc
	3 1 1 in $1 \times 6 \times 14 = 84$		Listing at least 4 different options
	3 1 1 in $1 \times 6 \times 14 = 84$ 2 2 1 in ${}^{3}C_{2} \times {}^{6}C_{2} \times 14 = 630$ 2 1 2 in ${}^{3}C_{2} \times 6 \times {}^{14}C_{2} = 1638$		Summing at least 4 different
	$2 1 2 \text{ in } {}^{3}C_{2} \times 6 \times {}^{14}C_{2} = 1638$		options
	1 2 $2 \sin 3 \times {}^{6}C_{2} \times {}^{14}C_{2} = 4095$		At least 3 correct numerical
			options
	Total ways = 13839 (13800)	A1 [5]	Correct answer
	10tai ways – 13039 (13000)	AI [3]	Correct answer

127. 9709_s15_ms_62 Q: 6

			_	
(a) (i)	$N****B$ Number of ways = $\frac{5!}{3!}$ = 20	B1 B1 B1	3	5! Seen in num oe or alone mult by $k \ge 1$ 3! Seen in denom can be mult by $k \ge 1$ Correct final answer
(ii)	B(AAA)NNS Number of ways = $\frac{5!}{2!}$ or 5P_3 = 60	M1 M1 A1	3	5! seen as a num can be mult by $k \ge 1$ Dividing by 2! Correct final answer
(b)	$^{14}C_9$ total options = 2002 T and M both in $^{12}C_7$ = 792 Ans 2002 – 792 = 1210 OR Neither in $^{12}C_9$ = 220 One in $^{12}C_8$ = 495 Other in $^{12}C_8$ = 495	M1 B1 A1 M1	3	$^{14}\text{C}_9$ or $^{14}\text{P}_9$ in subtraction attempt $^{12}\text{C}_7$ (792) seen Correct final answer Summing 2 or 3 options at least 1 correct condone $^{12}\text{P}_9 + ^{12}\text{P}_8 + ^{12}\text{P}_8$ here only Second correct option seen accept another 495 or if M1 not awarded, any correct option

 $128.\ 9709_s15_ms_63\ Q\hbox{:}\ 7$

(i)	W S D 1 1 3 = $6 \times 4 \times^{3} C_{3} = 24$ 1 3 1 = $6 \times^{4} C_{3} \times 3 = 72$ 3 1 1 = ${}^{6}C_{3} \times 4 \times 3 = 240$ 1 2 2 = $6 \times^{4} C_{2} \times^{3} C_{2} = 108$ 2 1 2 = ${}^{6}C_{2} \times 4 \times^{3} C_{2} = 180$	M1 M1		Listing at least 4 different options Mult 3 (combs) together assume 6 = ⁶ C ₁ , Σ <i>r</i> =5 Summing at least 4 different evaluated/unsimplified options >1
	$2 2 1 = {}^{6}C_{2} \times {}^{4}C_{2} \times 3 = 270$	B1		At least 3 correct unsimplified options
	Total = 894	A1	[5]	Correct answer
(ii)	$^{3}P_{2} \times ^{10}P_{8}$	B1		³ P ₂ oe seen multiplied either here or in (iii)
		B1		k^{10} P _x seen or k^y P ₈ with no addition,
	= 10886400	B1	[3]	$k \ge 1$, $y > 8$, $x < 10$ Correct answer, nfww
(iii)	DSWSWSWSWD or DWSWSWSWSD			If ³ P ₂ has not gained credit in (ii)
	D in ${}^{3}P_{2}$ ways = 6 S in ${}^{4}P_{4}$ ways = 24 W in ${}^{6}P_{4}$ = 360	В1		may be awarded ⁴ P ₄ or ⁶ P ₄ oe seen multiplied or common in all terms (no division)
	Swap SW in 2 ways	B1		Mult by 2 (condone 2!)
	Total = 103680 ways	B1	[3]	Correct answer, 3sf or better, nfww

129. 9709_w15_ms_61 Q: 5

(i)	5 (i) eg **(EEEE)*** Number of ways = $\frac{6!}{2!2!}$ = 180	M1 M1 A1 [3]	Mult by 6! oe Dividing by 2!2! oe Correct answer
(ii)	S*******T or T*******S Number of ways = $\frac{7!}{4!2!} \times 2$ = 210	M1	Mult by 7! Or dividing by one of 2! or 4! Mult by 2 Correct answer
(iii)	exactly one E in ${}^6\mathrm{C}_3$ ways = 20	M1 M1 A1 [3]	⁶ C _x as a single answer ^x C ₃ as a single answer correct answer

130. $9709_{\mathrm{w}15}_{\mathrm{ms}}62$ Q: 4

130. 9709_w	v15_ms_62 Q: 4		0.
(i)	Two in same taxi: ${}^{6}C_{2} \times {}^{4}C_{4} \times 2 \text{ or } {}^{6}C_{2} + {}^{6}C_{4}$	M1 M1	⁶ C ₄ or ⁶ C ₂ oe seen anywhere 'something' ×2 only or adding 2 equal terms
	= 30	A1 3	Correct final answer
(ii)	MJS in taxi $({}^5C_1 \times 2 \times 2) \times {}^4P_4$	M1 M1 M1	5P_1 , 5C_1 or 5 seen anywhere Mult by 2 or 4 oe Mult by 4P_4 oe eg 4! or $4\times^3P_3$ or can be part of 5!
	= 480	A1 4	Correct final answer

 $131.\ 9709_w15_ms_63\ Q:\ 5$

(a)	e.g. **(AAOOOI)**** $\frac{8!}{2!2!} \times \frac{6!}{2!3!} = 604800$	B1 M1 A1	3	8! (8 × 7!) or 6! seen anywhere, either alone or in numerator) Dividing by at least 3 of 2!2!2!3! (may be fractions added) Correct answer
(b)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	M1 A1 M1* DM1		Mult 3 appropriate combinations together assume $6={}^6C_1$, $1={}^4C_0$ etc., $\sum r=4$, C&E both present At least 3 correct unsimplified products Listing at least 4 different correct options Summing at least 4 outcomes, involving 3 combs or perms, $\sum r=4$
	Total = 1841	A1	5	Correct answer SC if CE removed, M1 available for listing at least 4 different correct options for remaining 2. DM1 for $^7C_1 \times ^6C_1 \times (\text{sum of at least 4 outcomes})$

 $132.\ 9709_s22_ms_51\ Q{:}\ 6$

Question	Answer	Marks	Guidance
(a)	$0.6 + 0.4 \times 0.3 = 0.72$ or $1 - 0.4 \times 0.7 = 0.72$	B1	Clear identified calculation AG
		1	
(b)	$0.72 \times (0.4 + 0.6 \times 0.2)$	M1	$0.72 \times u, 0 \le u \le 1$
		M1	$\begin{array}{l} v\times (0.4+0.6\times 0.2), \text{ or} \\ v\times (1-0.6\times 0.8)\ 0 \le v \leqslant 1 \text{ no additional terms} \\ \text{SC B1 for } 0.72\times (0.4+0.12) \text{ or } 0.72\times (1-0.48) \end{array}$
	0.3744	A1	WWW. Condone 0.374. SC B1 for 0.3744 only
		3	
	Alternative method for question 6(b)		
	[p(P1P2) + p(F1P1P2) + p(P1F2P2) + p(F1P1F2P2)] =	M1	Any two terms unsimplified and correct
	$0.6 \times 0.4 + 0.4 \times 0.3 \times 0.4 + 0.6 \times 0.6 \times 0.2 + 0.4 \times 0.3 \times 0.6 \times 0.2$	M1	Summing 4 appropriate scenarios by listing or on a tree diagram SC B1 for 0.24 + 0.048 + 0.072 + 0.0144
	0.3744	A1	WWW. Condone 0.374. SC B1 for 0.3744 only
		3	

Question	Answer	Marks	Guidance
(c)	$P(\text{fails first or second level } \text{finishes game}) = \frac{P(\text{fails first or second level } \cap \text{finishes game})}{their(\mathbf{b})}$	M1	Either $0.6 \times 0.6 \times 0.2$ or $0.4 \times 0.3 \times 0.4$ seen Condone 0.072 or 0.048 if seen in (b)
	Numerator = $P(S SF) + P(FS S) = 0.6 \times 0.6 \times 0.2 + 0.4 \times 0.3 \times 0.4 = 0.072 + 0.048 = 0.12$	A1	Both correct accept unsimplified expression. No additional terms
	Required probability = $\frac{0.12}{their(\mathbf{b})}$	M1	Their sum of two 3-term probabilities as numerator their (b) or correct
	$0.321 \text{ or } \frac{25}{78}$	A1	0.3205 < p ≤ 0.321
		4	

 $133.\ 9709_s22_ms_52\ Q\hbox{:}\ 7$

Question	Answer	Marks	Guidance
(a)	YYY: $\frac{5}{12} \times \frac{4}{11} \times \frac{3}{10} = \frac{60}{1320} \cdot \frac{1}{22}$		Either $12 \times 11 \times 10$ in denominator or $a \times (a-1) \times (a-2)$, $a = 5, 4, 3$ in numerator seen in at least one expression.
	OOO: $\frac{4}{12} \times \frac{3}{11} \times \frac{2}{10} = \frac{24}{1320}, \frac{1}{55}$ RRR: $\frac{3}{12} \times \frac{2}{11} \times \frac{1}{10} = \frac{6}{1320}, \frac{1}{220}$	A1	One expression $\frac{a}{12} \times \frac{a-1}{11} \times \frac{a-2}{10}$, $a = 5, 4, 3$ (consistent in expression). Correct order of values in the numerator is essential.
		M1	$\frac{5}{12} \times \frac{4}{d} \times \frac{3}{e} + \frac{4}{12} \times \frac{3}{d} \times \frac{2}{e} + \frac{3}{12} \times \frac{2}{d} \times \frac{1}{e}, \text{ either } d = 11, e = 10 \text{ or } d = 12, e = 12.$ Condone $\frac{1}{22} + \frac{1}{55} + \frac{1}{220} \text{OE}$
	$[Total =] \frac{90}{1320}, \frac{3}{44}, 0.0682$	A1	0.06818. Dependent only upon the second M mark.

Question	Answer	Marks	Guidance
(a)	Alternative method for question 7(a)		
	YYY: $\frac{^{5}C_{3}}{^{12}C_{3}} = \frac{10}{220}, \frac{1}{22}$	M1	Either 12 C $_3$ in denominator or a C $_3$ in numerator seen in at least one expression.
	OOO: $\frac{^{4}C_{3}}{^{12}C_{3}} = \frac{4}{220}, \frac{1}{55}$	A1	One expression $\frac{{}^{a}C_{3}}{{}^{12}C_{3}}$ $a = 5, 4, 3$
	$RRR: \frac{{}^{3}C_{3}}{{}^{12}C_{3}} = \frac{1}{220}$	M1	$\frac{{}^{5}C_{3}}{{}^{12}C_{3}} + \frac{{}^{4}C_{3}}{{}^{12}C_{3}} + \frac{{}^{3}C_{3}}{{}^{12}C_{3}}$
			Condone $\frac{1}{22} + \frac{1}{55} + \frac{1}{220}$ OE
	$[Total =] \frac{90}{1320}, \frac{3}{44}, 0.0682$	A1	0.06818. Dependent only upon the second M mark.
		4	
(b)	$[P(YYY all same colour) =] \frac{60}{1320}, \frac{90}{1320}$	М1	$\frac{\text{their P(YYY) or } \frac{60}{1320} \text{ or } \frac{1}{22}}{\text{their 7(a) or } \frac{90}{1320} \text{ or } \frac{3}{44}}$
			their 7(a) or 1320 or 44
	$\frac{2}{3}$, 0.667	A1	OE
		2	***
Question	Answer	Marks	Guidance
(c)	In each method, the M mark requires the scenarios to be identifiable. This be assumed to be in the same order. A correct value/expression will be condoned as identifying the connected.	-	
	Method 1		
	[1 - no orange =]1- $\frac{8}{12} \times \frac{7}{11} \times \frac{6}{10}$ or 1- $\frac{{}^{8}C_{3}}{{}^{12}C_{3}}$ = 1- $\frac{14}{55}$	В1	$\frac{8}{12} \times \frac{7}{11} \times \frac{6}{10}$ or $\frac{{}^8\text{C}_3}{{}^{12}\text{C}_3}$ seen, condone $\frac{336}{1320}$ or $\frac{56}{220}$ only, not OE.
		M1	$1 - \frac{f}{12} \times \frac{g}{d} \times \frac{h}{e}$ Either $d = 11$, $e = 10$ or $d = 12$, $e = 12$
	200		or $1 - \frac{{}^8C_3}{{}^{12}C_3}$.
	~~~		Condone $1 - \frac{14}{55}$ OE (not $\frac{41}{55}$ ).
	41 55	A1	$0.745 \le p \le 0.74545$ If M0 scored SC B1 0.745 $\le p \le 0.74545$ .





(c) Method 2 $P(1 \text{ O}) = \begin{pmatrix} \frac{4}{12} \times \frac{3}{11} \times \frac{2}{10} + \frac{4}{12} \times \frac{5}{11} \times \frac{4}{10} + \\ 2 \times \frac{4}{12} \times \frac{5}{11} \times \frac{3}{10} \end{pmatrix} \times 3 = \frac{672}{1320}$ $B1  P(1 \text{ O}) \text{ or } P(2 \text{ O})  correct, access of the properties $	
$P(1 \text{ O}) = \begin{vmatrix} \frac{1}{12} \times \frac{1}{11} \times \frac{1}{10} + \frac{1}{12} \times \frac{1}{10} \times \frac{1}{10} + \frac{1}{12} \times \frac{1}{10} \times \frac{1}{$	
P(1 O)  =  P(1 O)	cept unsimplified.
$2 \times \frac{4}{12} \times \frac{5}{11} \times \frac{3}{10}$ $1320$ form $f \times g \times h$ seen, eith	with at least one 3-term product of $er d = 11$ , $e = 10$ or $d = 12$ , $e = 12$ .
$P(2O) = \frac{4}{12} \times \frac{3}{11} \times \frac{8}{10} \times 3 = \frac{288}{1320}$	,
$P(3O) = \frac{24}{1320}$	
[Total =] $\frac{984}{1320} = \frac{41}{55}$ , 0.745 A1 $0.745 \leqslant p \leqslant 0.74545$ If M0 scored SC B1 0.745	≤ <i>p</i> ≤ 0.74545.
Method 3	
ORR = ${}^4C_1 \times {}^3C_2$ = 12 (112 or 48). Accept unsimply Note ${}^4C_1 \times {}^3C_2 = 112$ or 4C	r 2 orange sweets obtained correctly plified $2 \times {}^8C_1 = 48$ are correct alternatives.
O Y Y = ${}^4C_1 \times {}^5C_2$ = 40 O O Y = ${}^4C_2 \times {}^5C_1$ = 30 M1 3 correct scenarios (1, 2 or numerator, denominator 12	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40
Total = 164 $Prob = \frac{164}{{}^{12}C_{3}}$	9
$\frac{984}{1320} = \frac{41}{55}, 0.745$ A1 $0.745 \le p \le 0.74545$ If M0 scored SC B1 0.745	< p ≤ 0.74545.
Question Answer Marks	Guidance
(c) Method 4	
11 11 11 11	$0 = \frac{17}{66}$ . Accept unsimplified.
12 11 11	with at least one 3-term product of $er d = 11$ , $e = 10$ or $d = 12$ , $e = 12$ .
$P(O) = \frac{4}{12} = \frac{1}{3}$	
$P(Y R O) = \frac{5}{12} \times \frac{3}{11} \times \frac{4}{10} = \frac{1}{22}$	
$P(Y O) = \frac{5}{12} \times \frac{4}{11} = \frac{5}{33}$ $P(Y Y O) = \frac{5}{12} \times \frac{4}{11} \times \frac{4}{10} = \frac{2}{33}$	
$\frac{984}{1320} = \frac{41}{55}, 0.745$ A1 0.745 $\leqslant p \leqslant 0.74545$ If M0 scored SC B1 0.745	≤ p ≤ 0.74545.
Question Answer Marks	Guidance
(c) Method 5	
	$= \frac{28}{165}$ . Accept unsimplified.
1 1 0 4 0	with at least one 3-term product of
$P(^{\land} O) = \frac{8}{12} \times \frac{7}{11} \times \frac{4}{10} = \frac{28}{165}$ form $\frac{f}{12} \times \frac{g}{d} \times \frac{h}{e}$ seen, eith	er d = 11, e = 10  or  d = 12, e = 12
	er d = 11, e = 10  or  d = 12, e = 12
$P(^{\land} O) = \frac{8}{12} \times \frac{7}{11} \times \frac{4}{10} = \frac{28}{165}$ form $\frac{f}{12} \times \frac{g}{d} \times \frac{h}{e}$ seen, either	





 $134.\ 9709_s22_ms_53\ Q:\ 6$ 

Question	Answer	Marks	Guidance
(a)	1 st 2 nd 3 rd	B1	First and second jumps correct with probabilities and outcomes identified.
	0.3 S 0.3 S 0.7 F 0.1 S 0.9 F 0.1 S 0.9 F	В1	Third jump correct with probabilities and outcomes identified.
		2	
(b)	SFF 0.2×0.7×0.9 = 0.126 FSF 0.8×0.1×0.7 = 0.056 FFS 0.8×0.9×0.1 = 0.072	M1	Two or three correct 3 factor probabilities added, correct or FT from part 6(a). Accept unsimplified.
	[Total = probability of 1 success =] $0.254 \left(\frac{127}{500}\right)$	A1	Accept unsimplified.
	[Probability of at least 1 success = $1-0.8 \times 0.9 \times 0.9 = ]0.352 \left(\frac{44}{125}\right)$	B1 FT	Accept unsimplified
	P(exactly 1 success   at least 1 success)= $\frac{their 0.254}{their 0.352}$	M1	Accept unsimplified.
	0.722, <del>127</del> <del>176</del>	A1	$0.7215$
		5	

Question	Answer	Marks	Guidance
(c)	0.8×0.9×0.9×0.1×0.3×0.3 = 0.005832 [FFFSSS] 0.2×0.3×0.3×0.7×0.9×0.9 = 0.010206 [SSSFFF]	М1	$a \times b \times c \times d \times e \times f$ FT from <i>their</i> tree diagram. Either $a$ , $b$ and $c$ all = 0.8 or 0.9 (at least one of each) and $d$ , $e$ and $f$ all = 0.1 or 0.3 (at least one of each). Or $a$ , $b$ , $c$ = 0.2 or 0.3 (at least one of each) and $d$ , $e$ , $f$ = 0.7 or 0.9 (at least one of each).
	00	A1	Either correct. Accept unsimplified.
	[Total =] 0.0160[38]	A1	
		3	

135. 9709_m21_ms_52 Q: 2

Question	Answer	Marks	Guidance
(a)	0.2[×1]+0.45×0.4+0.35×0.3	M1	$0.2 \times 1] + 0.45 \times b + 0.35 \times c, b = 0.4, 0.6 c = 0.3, 0.7$
	$0.485 \text{ or } \frac{97}{200}$	A1	
		2	
(b)	(b) $P(Y \overline{H}) = \frac{P(Y \cap \overline{H})}{P(\overline{H})} = \frac{0.35 \times 0.7}{1 - their(\mathbf{a})} = \frac{0.245}{0.515}$		$0.35 \times 0.7$ or $0.245$ seen as numerator or denominator of fraction.
		М1	0.515 or $1$ – their (a) or $[0.3 \times 0 +] 0.45 \times d + 0.35 \times e$ , where $d$ = their $b'$ , $e$ = their $c'$ seen as denominator of fraction.
	$0.476 \text{ or } \frac{49}{103}$	A1	$0.4757 \le p \le 0.476$
		3	





136. 9709_s21_ms_51 Q: 3

Question	Answer	Marks	Guidance
(a)	$\left[\frac{8!}{3!}\right] = 6720$	B1	NFWW, must be evaluated
		1	
(b)	L E D: With LED together: 6! 2!	M1	$\frac{6!}{k}$ or $\frac{5!x6}{k}$ $k \ge 1$ and no other terms
		M1	$\frac{m}{2!}$ , m an integer, $m \ge 5$
	360	A1	CAO
		3	
(c)	Method using $__$ A $_$ D $__$ : Arrange the 6 letters RELESE = $\frac{6!}{3!}$ [= 120]	*M1	$\frac{6!}{3!} \times k \text{ seen, } k \text{ an integer} > 0$
	Multiply by number of ways of placing AD in non-adjacent places = their $120 \times {}^{7}P_{2}$ [= 5040]	*M1	$m \times n(n-1)$ or $m \times {}^nC_2$ or $m \times {}^nP_2$ , $n=6, 7$ or $8, m$ an integer $> 0$
	[Probability =] $\frac{their  5040}{their  6720}$	DM1	Denominator = <i>their</i> (a) or correct, dependent on at least one M mark already gained.
	$\frac{5040}{6720}$ or $\frac{3}{4}$ or 0.75	A1	
	Alternative method for Question 3(c)		
	Method using 'Total arrangements – Arrangements with A and D together':	*M1	<i>Their</i> 6720 – <i>k</i> , <i>k</i> a positive integer
	Their $6720 - \frac{7! \times 2}{3!}$ [= 5040]	*M1	$(m-)\frac{7 \times k}{3!}, k=1,2$

Question	Answer	Marks	Guidance
	[Probability =] $\frac{their 5040}{their 6720}$	DM1	With denominator = their (a) or correct, dependent on at least one M mark already gained.
	$\frac{5040}{6720}$ or $\frac{3}{4}$ or 0.75	A1	
	Alternative method for Question 3(c)		
	Method using '1 – Probability of arrangements with A and D together': $\frac{7!\times2}{3!}$ [= 1680]	*M1	$\frac{7 \times k}{3!}, k = 1, 2$
	[Probability =] $\frac{their 1680}{their 6720}$	*M1	With denominator = their (a) or correct
	1 – their 1680 their 6720	DM1	$1-m, 0 \le m \le 1$ , dependent on at least one M mark already gained
	$\frac{5040}{6720}$ or $\frac{3}{4}$ or 0.75	A1	
		4	





 $137.\ 9709_s21_ms_51\ Q:\ 4$ 

Question	Answer	Marks	Guidance
(a)	0.3 P P	B1	Fully correct labelled tree diagram for each pair of branches clearly identifying written and practical, pass and fail for each intersection (no additional branches)
	0.8 W1 P 0.7 0.3 P P	В1	'One written test' branch all probabilities (or %) correct
	0.7 PF W2 P 0.7 PF	B1	'Two written tests' branch all probabilities (or %) correct, condone additional branches after W2F with probabilities 1 for PF and 0 for PP
	0.4 W2 F		
		3	
(b)	$ [P(W1P) \times P(PP) + P(W1F) \times P(W2P) \times P(PP)] $ $0.8 \times 0.3 + 0.2 \times 0.6 \times 0.3 $	M1	Consistent with their tree diagram or correct
	$0.276 \text{ or } \frac{69}{250}$	A1	.0,
		2	
(c)	$P(W1 P) = \frac{P(W1 \cap \text{Practical})}{P(\text{getting place})} = \frac{0.8 \times 0.3}{\text{their}(b)} \left[ = \frac{0.24}{0.276} \right]$	M1	Correct expression or FT their (b)
	$\frac{20}{23}$ or 0.87[0]	A1	
		2	0.

 $138.\ 9709_s21_ms_52\ Q:\ 3$ 

Question	Answer	Marks	Guidance
(a)	P(not late) = $0.4 \times 0.45 + 0.35 \times 0.3 + 0.25 \times (1 - x)$ or P(late) = $0.4 \times 0.55 + 0.35 \times 0.7 + 0.25x$	M1	$0.4 \times p + 0.35 \times q + 0.25 \times r,$ p = 0.45, 0.55, q = 0.3, 0.7  and  r = (1 - x), x
	0.18 + 0.105 + 0.25 (1 - x) = 0.48 or 0.22 + 0.245 + 0.25x = 0.52	A1	Linear equation formed using sum of 3 probabilities and 0.48 or 0.52 as appropriate. Accept unsimplified.
	x = 0.22	A1	Final answer
		3	
(b)	$P(train late) = \frac{P(train \cap late)}{P(train \cap late)}$	В1	0.35×0.7 or 0.245 seen as numerator of fraction
	$= \frac{0.35 \times 0.7}{1 - 0.48} \text{ or } \frac{0.35 \times 0.7}{0.4 \times 0.55 + 0.35 \times 0.7 + 0.25 \times their 0.22}$	M1	P(late) seen as a denominator with <i>their</i> probability as numerator (Accept $\frac{their\ p}{0.52}$ or $\frac{their\ p}{0.22 + 0.245 + 0.25 \times their\ 0.22}$ )
	$= 0.471 \text{ or } \frac{49}{104}$	A1	
		3	

 $139.\ 9709_s21_ms_52\ Q:\ 6$ 

Question	Answer	Marks	Guidance
(a)	<u>8!</u> <u>2!3!</u>		$\frac{8!}{k \bowtie m!} k = 1 \text{ or } 2, m = 1 \text{ or } 3, \text{ not } k = m = 1$ no additional terms
	3360	A1	
		2	





Question	Answer	Marks	Guidance						
(b)	Method 1 Arrangements Rs at ends – Arrangements Rs at ends and Os together								
	[Os not together = ] $\frac{6!}{3!}$ - 4!	M1	$6! - m, 1 \le k \le 3, m \text{ an integer, condone } 2 \times \left(\frac{6!}{k!}\right) - m.$						
		M1	w-4! or $w-24$ , $w$ an integer Condone $w-2 \times 4!$						
	96	A1							
	Method 2 identified scenarios R R, Arrangement No Os together + 2Os and a single O								
	${}^{4}C_{3} \times 3! + {}^{4}C_{2} \times 2 \times 3!$	M1	4 C ₃ × 3! + r or 4× 3! + r or 4 P ₃ × 3! + r, r an integer. Condone 2 × 4 C ₃ × 3! + r. 2 × 4× 3! + r or 2 × 4 P ₃ × 3! + r.						
		M1	$q + {}^{4}\text{C}_{2} \times 3! \times k \text{ or } q + {}^{4}\text{P}_{2} \times 3! \times k, k = 1, 2, q \text{ an integer}$						
	[24 + 72 =] 96	A1							
		3							
(c)	Method 1 Identified scenarios								
	OORR ${}^{3}C_{2} \times {}^{2}C_{2} \times [{}^{3}C_{0}] = 3 \times 1 = 3$ ORR_ ${}^{3}C_{1} \times {}^{2}C_{2} \times {}^{3}C_{1} = 3 \times 1 \times 3 = 9$	B1	Outcomes for 2 identifiable scenarios correct, accept unsimplified.						
	OOR ${}^{3}C_{2} \times {}^{2}C_{1} \times {}^{3}C_{1} = 3 \times 2 \times 3 = 18$ OR ${}^{3}C_{1} \times {}^{2}C_{1} \times {}^{3}C_{2} = 3 \times 2 \times 3 = 18$ OOOR ${}^{3}C_{1} \times {}^{2}C_{1} \times {}^{3}C_{2} = 3 \times 2 \times 3 = 18$	M1	Add 4 or 5 identified correct scenarios only values, no additional incorrect scenarios, no repeated scenarios, accept unsimplified, condone use of permutations.						
	Total 50	A1	All correct and added						
		M1	$\frac{\textit{their'} 50'}{^8C_4}$ , accept numerator unevaluated						
Question	Answer	Marks	Guidance						
(c) cont'd	$\frac{50}{70}$ or 0.714	Al							
	Method 2 Identified outcomes								
	Method 2 Identified outcomes								
	ORTM ${}^3C_1 \times {}^2C_1 = 6$	B1	Outcomes for 5 identifiable scenarios correct, accept unsimplified.						
	ORTM ${}^{3}C_{1} \times {}^{2}C_{1} = 6$ ORTW ${}^{3}C_{1} \times {}^{2}C_{1} = 6$ ORMW ${}^{3}C_{1} \times {}^{2}C_{1} = 6$ ORMM ${}^{3}C_{1} \times {}^{2}C_{1} = 6$ ORRM ${}^{3}C_{1} \times {}^{2}C_{2} = 3$ ORRW ${}^{3}C_{1} \times {}^{2}C_{2} = 3$ ORRT ${}^{3}C_{1} \times {}^{2}C_{2} = 3$ OROR ${}^{3}C_{1} \times {}^{2}C_{2} = 3$ OROT ${}^{3}C_{2} \times {}^{2}C_{2} = 3$ OROT ${}^{3}C_{2} \times {}^{2}C_{1} = 6$ OROM ${}^{3}C_{2} \times {}^{2}C_{1} = 6$ OROW ${}^{3}C_{2} \times {}^{2}C_{1} = 6$	M1	unsimplified.  Add 9, 10 or 11 identified correct scenarios only values, no additional incorrect scenarios, no repeated scenarios, accept						
	ORTM ${}^{3}C_{1} \times {}^{2}C_{1} = 6$ ORTW ${}^{3}C_{1} \times {}^{2}C_{1} = 6$ ORMW ${}^{3}C_{1} \times {}^{2}C_{1} = 6$ ORMW ${}^{3}C_{1} \times {}^{2}C_{2} = 6$ ORRM ${}^{3}C_{1} \times {}^{2}C_{2} = 3$ ORRW ${}^{3}C_{1} \times {}^{2}C_{2} = 3$ ORRT ${}^{3}C_{1} \times {}^{2}C_{2} = 3$ OROR ${}^{3}C_{2} \times {}^{2}C_{2} = 3$ OROT ${}^{3}C_{2} \times {}^{2}C_{1} = 6$ OROM ${}^{3}C_{2} \times {}^{2}C_{1} = 6$ OROW ${}^{3}C_{2} \times {}^{2}C_{1} = 6$ OROO ${}^{3}C_{3} \times {}^{2}C_{1} = 6$	M1	unsimplified.  Add 9, 10 or 11 identified correct scenarios only values, no additional incorrect scenarios, no repeated scenarios, accept unsimplified, condone use of permutations.						
	ORTM ${}^{3}C_{1} \times {}^{2}C_{1} = 6$ ORTW ${}^{3}C_{1} \times {}^{2}C_{1} = 6$ ORMW ${}^{3}C_{1} \times {}^{2}C_{1} = 6$ ORMM ${}^{3}C_{1} \times {}^{2}C_{2} = 6$ ORRM ${}^{3}C_{1} \times {}^{2}C_{2} = 3$ ORRW ${}^{3}C_{1} \times {}^{2}C_{2} = 3$ ORRT ${}^{3}C_{1} \times {}^{2}C_{2} = 3$ OROR ${}^{3}C_{2} \times {}^{2}C_{2} = 3$ OROT ${}^{3}C_{2} \times {}^{2}C_{1} = 6$ OROM ${}^{3}C_{2} \times {}^{2}C_{1} = 6$ OROW ${}^{3}C_{2} \times {}^{2}C_{1} = 6$ OROO ${}^{3}C_{3} \times {}^{2}C_{1} = 2$ Total 50	M1	unsimplified.  Add 9, 10 or 11 identified correct scenarios only values, no additional incorrect scenarios, no repeated scenarios, accept unsimplified, condone use of permutations.  All correct and added  their '50'						





 $140.\ 9709_w21_ms_51\ Q:\ 3$ 

Question	Answer	Marks	Guidance
	$\left[P(T B') = \frac{P(T \cap B')}{P(B')}\right]$	М1	$0.45 \times a + 0.35 \times b + 0.2[\times 1], a = 0.7, 0.3b = 0.4, 0.6$ , seen anywhere.
	$P(B') = 0.45 \times 0.7 + 0.35 \times 0.4 + 0.2 \times 1$ $= 0.655, \frac{131}{200}$	A1	Correct, accept unsimplified.
	$P(T \cap B') = 0.35 \times 0.4 = 0.14, \frac{7}{50}$	M1	Seen as numerator or denominator of a fraction.
	$P(T \mid B') = \frac{their  0.14}{their  0.655}$	M1	Values substituted into conditional probability formula correctly. Accept unsimplified.  Denominator sum of 3 two-factor probabilities (condone omission of 1 from final factor).  If clearly identified, condone from incomplete denominator.
	$0.214, \frac{28}{131}$	A1	If 0 marks awarded, SC B1 0.214 WWW.
		5	

 $141.\ 9709_w21_ms_51\ Q\hbox{:}\ 5$ 

Question	Answer	Marks	Guidance
(a)	[8! =] 40 320	B1	Evaluated, exact value only.
		1	
(b)	Method 1 [^^^R^^S^^]		•
	$7! \times {}^8C_2 \times 2$	M1	$7! \times k$ seen, $k$ an integer $> 1$ .
	(9	М1	$m \times n(n-1)$ or $m \times {}^{n}C_{2}$ or $m \times {}^{n}P_{2}$ , $n = 7, 8$ or $9, m$ an integer $> 1$ .
	282 240	A1	Exact value only. SC B1 for final answer 282 240 WWW.
	Method 2 [Total number of arrangements – Arrangements with R & S together	:]	
	$9! - 8! \times 2$	M1	9! – k, k an integer < 362 880 .
	00	M1	$m - 8! \times n$ , m an integer > 40 320, $n = 1,2$ .
	282 240	A1	Exact value only. SC B1 for final answer 282 240 WWW.
		3	
(c)	⁹ C ₅ [x ⁴ C ₄ ]	М1	${}^9C_x[\times^{9-x}C_{9-x}]$ $x=4$ , 5. Condone $\times$ 1 for ${}^{9-x}C_{9-x}$ . Condone use of P.
	126	A1	www
		2	

Question	Answer	Marks	Guidance
(d)	[Number of ways with Raman and Sanjay together on back row =] 7C_3 [Number of ways with Raman and Sanjay together on front row =] 7C_2	М1	${}^{7}C_{x}$ seen, $x = 3$ or 2.
	[Total =] 35 + 21	M1	Summing two correct scenarios.
	56	A1	Evaluated – may be seen used in probability.  If M0 scored, SC B1 for 56 WWW.
	Probability = $\frac{their  56}{their  (c)} = \frac{56}{126}, \frac{4}{9},  0.444$	B1 FT	FT <i>their</i> 56 from adding 2 or more scenarios in numerator and <i>their</i> (c) or correct as denominator.
		4	





 $142.\ 9709_w21_ms_52\ Q:\ 1$ 

Question	Answer	Marks	Guidance
(a)	$\frac{82}{180}, \frac{41}{90}, 0.456$	В1	
		1	
(b)	$\left[P(M D) = \frac{P(M \cap D)}{P(D)}\right] = \frac{\frac{11}{180}}{\frac{20}{180} + \frac{11}{180}} \text{or} \frac{0.6011}{0.1722}$	M1	Their identified $\frac{P(M\cap D)}{P(D)}$ or from data table $\frac{11}{20+11}$ , accept unsimplified, condone $\times$ 180.
	$\frac{11}{31}$ , 0.355	A1	Final answer.
		2	

Question	Answer	Marks	Guidance
(c)	$P(F) = \frac{100}{180}, \frac{5}{9}, 0.5556$ OE $P(G) = \frac{82}{180}, \frac{41}{90}, 0.4556$ OE	M1	Their identified $P(F) \times their$ identified $P(G)$ or correct seen, can be unsimplified.
	$\begin{split} P(F \cap G) &= \frac{38}{180}, \frac{19}{90}, 0.2111  \text{OE} \\ P(F) \times P(G) &= \frac{100}{180} \times \frac{82}{180} = \frac{41}{162}, 0.2531  \text{OE}  \left[ \neq \frac{38}{180} \right] \\ \text{Not independent} \end{split}$	A1	$\frac{41}{162}, \frac{38}{180}, P(F \cap G)$ and $P(F) \times P(G)$ seen with correct conclusion, WWW. Values and labels must be seen.
	Alternative method for question 1(c)		
	$P(F \cap G) = \frac{38}{180}, \frac{19}{90}, 0.2111 \text{ OE } P(G) = \frac{82}{180}, \frac{41}{90}, 0.4556 \text{ OE}$ $P(F G) = \frac{\frac{38}{180}}{\frac{180}{180}} = \frac{19}{41}, 0.4634 \text{ OE}$ $\neq P(F) = \frac{100}{180}, \frac{5}{9}, 0.5556 \text{ OE}$ Not independent	M1	$P(F G)$ (OE) unsimplified with <i>their</i> identified probs or correct $\frac{19\ 100}{41\ 180}, P(F\cap G) \text{ and } P(F G) \text{ seen with correct conclusion WWW.}$ Values and labels must be seen.
		2	

143. 9709_w21_ms_53 Q: 5

Question		Answ	er'	Marks	Guidance
(a)	$^{5}P_{2} \times ^{7}P_{4} \text{ or } 5 \times 4 \times 7 \times 6$	$\times$ 5 $\times$ 4	, –	M1	${}^{5}P_{x} \times {}^{7}P_{y}, 1 \leqslant x \leqslant 4, 1 \leqslant y \leqslant 6$
	16 800			A1	
				2	





Question	Answer	Marks	Guidance					
5(b)	Method 1 [Identify scenarios]							
	With A and no 5: $8 \times {}^{6}P_{4}$ or $(1 \times 4 \times 6 \times 5 \times 4 \times 3) \times 2$ or $4C1 \times 2! \times 6P4 =$	М1	One number of ways correct, accept unsimplified.					
	2880 With 5 and no A: ${}^{4}P_{2} \times 4 \times {}^{6}P_{3}$ or $(4 \times 3 \times 1 \times 6 \times 5 \times 4) \times 4$ or $4P2 \times 6C3 \times 4! = 5760$	M1	Add 2 or 3 identified correct scenarios only, accept unsimplified.					
	With A and 5: $8\times4\times$ ⁶ P ₃ or $(4\times1\times1\times6\times5\times4)\times8$ or $4C1\times2!\times6C3\times4!=3840$							
	[Total =] 12 480	A1	CAO					
	Method 2 [total number of codes – number of codes with no A or 5]							
	No A or $5: (4 \times 3) \times (6 \times 5 \times 4 \times 3) = 4320$	M1	$^4P_2 \times ^6P_4$ or $^4C_2 \times ^6C_4$ seen, accept unsimplified.					
	Required number = their (a) - their 4320	M1	Their 5(a) (or correct) - their (No A or 5) value.					
	12 480	A1						
	Method 3 [subtracting double counting]							
	With A ${}^{4}P_{1} \times {}^{7}P_{4} \times 2$ or ${}^{4}C_{1} \times 2 \times {}^{7}C_{4} \times 4! = 6720$	M1	One outcome correct, accept unsimplified.					
	With $5^5P_2 \times ^6P_3 \times 4$ or $^5C_2 \times 2 \times ^6C_3 \times 4! = 9600$ With A and $5^=4P_1 \times ^6P_3 \times 8$ or $4C1 \times 2! \times 6C3 \times 4! \times 8 = 3840$		0-					
	Required number = 6720 + 9600 - 3840	M1	Adding 'with a' to 'with 5' and subtracting 'A and 5'.					
	12 480	A1	CAO					
		3	4 O					
Question	Answer	Marks	Guidance					
(c)	Method 1 – number of successful codes divided by total	•						
	(1 ×) 3 × ⁵ P ₂	M1	$3 \times {}^{5}P_{n}$ , $n = 2, 3$ . Condone $3 \times {}^{5}C_{2}$ , no + or –.					
	Probability = $\frac{their 3 \times 5P2}{their 16 800}$	M1	Probability = $\frac{their 60}{their 16 800}$ .					
-	$\frac{1}{280}$ , 0.00357	A1						
	Method 2 – product of probabilities of each part of code							
	$\frac{1}{5} \times \frac{1}{4} \times \frac{1}{7} \times \frac{3}{6} \left( \times \frac{5}{5} \times \frac{4}{4} \right) \text{ or } \frac{1}{5} \times \frac{1}{4} \times \frac{3 \times 5P2}{7P4}$	M1	$\frac{1}{5} \times \frac{1}{4} \times k$ where $0 < k < 1$ for considering letters.					
		M1	$t \times \frac{1}{7} \times \frac{3}{6}$ or $t \times \frac{3 \times 5P2}{7P4}$ where $0 < t < 1$ .					
			G+O					
	$\frac{1}{280}$	A1	CAO					

144. 9709_w21_ms_53 Q: 7

Question	Answer	Marks	Guidance
(a)	Probabilities: $\frac{x+1}{x+10}$ , $\frac{9}{x+10}$ , $\frac{x}{x+10}$ , $\frac{10}{x+10}$	B1	One probability correct in correct position.
		B1	Another probability correct in correct position.
		B1	Other two probabilities correct in correct positions.
		3	
(b)	$\frac{4}{10} \times their \frac{10}{x+10}$	М1	Method consistent with their tree diagram.
	$\frac{4}{x+10}$	A1	AG
		2	





Question	Answer	Marks	Guidance
(c)	$\frac{4}{x+10} = \frac{1}{6}$ $x+10 = 24,  x=14$	В1	Find value of $x$ . Can be implied by correct probabilities in calculation.
	$P(ARed BRed) = P(ARed \cap BRed) \div P(BRed)$ $\frac{6}{10} \times their \frac{x+1}{x+10} \qquad \frac{6}{10} \times \frac{15}{24} \qquad \frac{3}{8}$	B1 FT	$\frac{6}{10} \times their \frac{x+1}{x+10}$ as numerator or denominator of fraction.
	$\frac{\frac{6}{10} \times their \frac{x+1}{x+10}}{\frac{6}{10} \times their \frac{x+1}{x+10} + \frac{4}{10} \times their \frac{x}{x+10}} = \frac{\frac{6}{10} \times \frac{15}{24}}{\frac{6}{10} \times \frac{15}{24} + \frac{4}{10} \times \frac{14}{24}} = \frac{\frac{3}{8}}{\frac{73}{120}}$	M1	$\frac{6}{10} \times their \frac{x+1}{x+10} + \frac{4}{10} \times their \frac{x}{x+10}$ seen anywhere.
		A1 FT	Seen as denominator of fraction.
	$\frac{45}{73}$ , 0.616[4]	A1	If B0 M0: SC B1 for $\frac{\frac{3}{8}}{\frac{73}{120}}$ or $\frac{0.375}{0.6083}$ SC B1 $\frac{45}{73}$ or 0.616.
		5	

 $145.\ 9709_m20_ms_52\ Q:\ 6$ 

Question	Answer	Marks	Guidance
(a)	Box A Box B	B1	Both correct probs, box A
	10 Red	B1	2 probs correct for box B
	$\frac{10}{15}$ Red	B1	All correct probs for box B
	$\frac{7}{8}$ Red $\frac{5}{5}$		
	15 Blue		
	$\frac{9}{15}$ Red	. 7	
	$\frac{1}{8}$ Blue	,	
	$\frac{6}{15}$ Blue		
		3	
(b)	$\frac{7}{8} \times \frac{5}{15} + \frac{1}{8} \times \frac{9}{15}$	M1	Two 2 factor terms added, correct or FT their 6(a).
	$= \frac{44}{120} \left[ \frac{11}{30} \text{ or } 0.367 \right]$	A1	OE
		2	





Question	Answer	Marks	Guidance
(c)	$P(A \text{ blue }   B \text{ blue}) = \frac{P(A \text{ blue } \cap B \text{ blue})}{P(B \text{ blue})}$ $= \frac{\frac{1}{8} \times \frac{6}{15}}{\frac{7}{8} \times \frac{5}{15} + \frac{1}{8} \times \frac{6}{15}} = \frac{\frac{1}{20}}{\frac{41}{120}}$	M1	their $\frac{1}{8} \times \frac{6}{15}$ seen as numerator or denom of fraction
		M1	their $\frac{7}{8} \times \frac{5}{15} + \frac{1}{8} \times \frac{6}{15}$ seen
		М1	their $\frac{7}{8} \times \frac{5}{15} + \frac{1}{8} \times \frac{6}{15}$ seen as denominator
	$=\frac{6}{41}$ or 0.146	A1	
		4	

 $146.\ 9709_s20_ms_51\ Q\hbox{:}\ 5$ 

Question	Answer	Marks
(a)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	Fully correct labelled tree for method of transport with correct probabilities.	B1
	Fully correct labelled branches with correct probabilities for lateness with either 1 branch after W or 2 branches with the prob 0	В1
		2
(b)	$0.35 \times 0.3 + 0.44 \times 0.8 (+0)$	М1
	0.457	A1
		2

Question		Answer	Marks
(c)	$P(\text{not B} \text{not fruit}) = \frac{P(B' \cap F')}{P(F')}$		M1
	$\frac{0.35\times0.7+0.21\times1}{1-their(\mathbf{b})}$		M1
	0.455		М1
	0.543 (M1 for 1 – their (b) or summing t denominator)	hree appropriate 2-factor probabilities, correct or consistent with <i>their</i> tree diagram as	
	$0.838 \text{ or } \frac{455}{543}$		A1
			4





 $147.\ 9709_s20_ms_52\ Q:\ 2$ 

Question	Answer	Marks
(a)	$\frac{56}{500}$ or $\frac{14}{125}$ or 0.112	B1
		1
(b)	$P(D S) = \frac{P(D \cap S)}{P(S)} = \frac{120}{280}$	M1
	$\frac{120}{280}$ or $\frac{3}{7}$	A1
		2

Question	Answer	Marks
(c)	$P(\text{hockey}) = \frac{220}{500} = 0.44$ $P(\text{Amos or Benn}) = \frac{242}{500} = 0.484$ $P(\text{hockey} \cap \text{A or B}) = \frac{104}{500} = 0.208$ $P(\text{H}) \times P(\text{A U B}) = P(\text{H} \cap (\text{A U B})) \text{ if independent}$	MI
	$\frac{220}{500} \times \frac{242}{500} = \frac{1331}{6250}$ so not independent	A1
	NO.	2

 $148.\ 9709_s20_ms_53\ Q{:}\ 1$ 

Question	Answer	Marks
(a)	0.6 E  0.2 C  0.4 NE  0.2 D  0.45 B  0.1 NE  0.35 W  1 E  NE	
	Fully correct labelled tree for method of transport with correct probabilities.	В1
	Fully correct labelled branches with correct probabilities for lateness with either 1 branch after W or 2 branches with the probability 0.	B1
		2
(b)	$P(C E) = \frac{P(C \cap E)}{P(E)} = \frac{0.2 \times 0.6}{0.2 \times 0.6 + 0.45 \times 0.1 + 0.35 \times 1}$	M1
	Summing three appropriate 2-factor probabilities	M1
	$\frac{0.12}{0.515}$	A1
	$0.233 \text{ or } \frac{12}{515}$	A1
		4





149. 9709_s20_ms_53 Q: 7

Question	Answer	Marks
(a)	$\frac{9!}{2!2!} = 90720$	B1
		1
(b)	$\frac{6!}{2!}$	M1
	360	A1
		2

Question	Answer	Marks
(c)	2 Es together = $\frac{8!}{2!}$ (= 20160)	M1
	Es not together = 90720 – 20160 = 70560	M1
	$Probability = \frac{70560}{90720}$	M1
	$\frac{7}{9}$ or 0.778	A1
	Alternative method for question 7(c)	
	_^_^_^_	
	$\frac{7!}{2!} \times \frac{8 \times 7}{2} = 70560$	
	$7! \times k$ in numerator, $k$ integer $\geqslant 1$ , denominator $\geqslant 1$	M1
	Multiplying by ⁸ C ₂ OE	M1
	$Probability = \frac{70560}{90720}$	M1
	$\frac{7}{9}$ or 0.778	A1
		4
Question	Answer	Marks
(d)	Scenarios are: $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	M1
	Summing the number of ways for 3 or 4 correct scenarios	M1
	Total = 35	A1
		3





 $150.\ 9709_w20_ms_51\ Q:\ 1$ 

Question	Answer							Marks Guidance	
(a)					R	ed			M1 Complete outcome space or or listing A and B outcomes
			1	2	3	4	5	6	or listing A and B outcomes or listing A∩B outcomes
		1	2	3	4	5	6	7	
	Blue	2	3	4	4 5 6 7 8				
		3	4	5	6	7	8	9	
		4	5	6	7	8	9	10	
		5	6	7	8	9	10	11	
		6	7	8	9	10	11	12	
	P(A∩l	$(B) = \frac{3}{3}$	5 6						A1 With evidence
								2	

Question	Answer	Marks	Guidance
(b)	$P(A) \times P(B) = \frac{1}{3} \times \frac{10}{36}$	M1	Their $\frac{1}{3}$ ×their $\frac{10}{36}$ seen
	$\frac{5}{54} \neq \frac{5}{36}$ so not independent	A1	$\frac{5}{54}, \frac{5}{36}$ , P(A) × P(B) and P(A \cap B) seen in workings and correct
			conclusion stated  Condone $\frac{5}{36}$ being stated in (a)
	Alternative method for question 1(b)	7	
	$P(B A) = P(B)$ $P(B A) = \frac{P(A \cap B)}{P(A)} = \frac{\frac{5}{36}}{\frac{1}{3}}$	M1	OE, $\frac{their1(a)}{theirP(A)}$ seen
	$\frac{5}{12} \neq \frac{5}{18}$ so not independent	A1	P(A B), P(B), $\frac{5}{12}$ , $\frac{5}{18}$ seen in workings and correct conclusion stated  Condone $\frac{5}{18} \equiv \frac{10}{36}$ being identified in (a)
		2	





151. 9709_w20_ms_51 Q: 2

Question	Answer	Marks	Guidance
(a)	$0.6 \times 0.7 + 0.4(1 - x) = 0.58$ = 0.42 + 0.4(1 - x) = 0.58	M1	Equation of form $0.6 \times a + 0.4 \times b = 0.58$ ; a = 0.3, 0.7, b = x, (1 - x)
		B1	Single correct product seen, condone 0·42, in an equation of appropriate form
	x = 0.6	A1	
	Alternative method for question 2(a)		
	$0.6 \times 0.3 + 0.4x = 0.42  = 0.18 + 0.4x = 0.42$	M1	Equation of form $0.6 \times a + 0.4 \times b = 0.42$ ; a = 0.3, 0.7, b = x, (1 - x)
		B1	Single correct product seen, condone 0·18, in an equation of appropriate form
	x = 0.6	A1	
		3	
(b)	$(0.6 \times 0.3)^2$	M1	$(a \times b)^2$ , $a = 0.6$ , $0.4$ and $b = 0.7$ , $0.3$ , $x$ , $(1-x)$ or $0.18^2$ , alone.
	0.0324	A1	
		2	

152.  $9709_{w20}_{ms_51}$  Q: 7

(a)	<u>8!</u> <u>2!</u>	M1	$\frac{8!}{k} \equiv \frac{7 \times 8}{k}$ , where $k \in \mathbb{N}$ , $\frac{a!}{2(!)}$ , where $a \in \mathbb{N}$
	20160	A1	
		2	

Question	Answer	Marks	Guidance	
(b)	Total number of ways: $\frac{10!}{2!3!}$ (= 302400) (A)	B1	Accept unsimplified	
	With Ps together: $\frac{9!}{3!}$ (= 60 480) (B)	B1	Accept unsimplified	
	With Ps not together: 302 400 – 60 480	M1	$\frac{10!}{m} - \frac{9!}{n}$ , m, n integers or (A) – (B) if clearly identified	
	241 920	A1		
	Alternative method for question 7(b)			
	<u>81</u>	B1	$k \times 8!$ in numerator, $k$ a positive integer, no $\pm$	
	3!	B1	$m \times 3!$ in denominator, m a positive integer, no $\pm$	
	$\times \frac{9\times 8}{2}$	M1	Their $\frac{8!}{3!}$ multiplied by ${}^9\mathrm{C}_2$ or ${}^9\mathrm{P}_2$ no additional terms	
	241 920	A1	Exact value, WWW	
		4		





Question	Answer	Marks	Guidance
(c)	Probability = $\frac{\text{Number of ways Es at beginning and end}}{\text{Total number of ways}}$ Probability = $\frac{\frac{8!}{2!}}{\frac{10!}{2 \times 3!}} = \frac{20160}{302400}$	M1	$\frac{\left(\frac{8!}{k!}\right)}{\frac{10!}{k!l!}} 1 \le k, l \in \mathbb{N} \le 3, \text{ FT denominator from 7(b) or correct}$
	$\frac{1}{15}$ , 0·0667	A1	
	Alternative method for question 7(c)		
	Probability = $\frac{3}{10} \times \frac{2}{9}$	M1	$\frac{a}{10} \times \frac{a-1}{9} = 3,2$
	$\frac{1}{15}$ , 0·0667	A1	
	Alternative method for question 7(c)		
	Probability = $\frac{1}{10} \times \frac{1}{9} \times 3!$	M1	$\frac{1}{10} \times \frac{1}{9} \times m!, m = 3, 2$
	$\frac{1}{15}$ , 0.0667	A1	10
		2	***

Question	Answer	Marks	Guidance
(d)	Scenarios: $P \to E \to C_0 = 1$	M1	5C_x seen alone, $1 \le x \le 4$
	PEE $\begin{array}{ccc} c_{0-1} \\ c_{1} \\ c_{0} \\ c_{1} \\ c_{2} \\ c_{1} \\ c_{2} \\ c_{3} \\ c_{2} \\ c_{1} \\ c_{2} \\ c_{3} \\ c_{3} \\ c_{1} \\ c_{3} \\ c_{4} \\ c_{5} \\ c_{5} \\ c_{6} \\ c_{7} \\$	M1	Summing the number of ways for 3 or 4 correct scenarios (can be unsimplified), no incorrect scenarios
	Total = 26	A1	
		3	

$$153.\ 9709_w20_ms_52\ Q:\ 4$$

Question	Answer	Marks	Guidance
(a)	0.75 Fine 0.8 Fine 0.25 Rainy 0.6 Rainy	B1	All probabilities correct, may be on branch or next to 'Fine/Rainy' Ignore additional branches.
		1	
(b)	$0.8 \times 0.75 + 0.2 \times 0.4 \ \ (= 0.6 + 0.08)$	M1	Correct or FT from <i>their</i> diagram unsimplified, all probabilities $0 .  Partial evaluation only sufficient when correct.  Accept working in 4(b) or by the tree diagram.$
	0.68, $\frac{17}{25}$	A1	From supporting working
		2	





Question	Answer	Marks	Guidance
(c)	$0.8 \times 0.75 \times 0.25 + 0.8 \times 0.25 \times 0.6$	M1	$a \times b \times c + a \times 1 - b \times d$ , $0 < c$ , $d \le 1$ , $a$ , $b$ consistent with <i>their</i> tree diagram or correct, no additional terms
	0.15 + 0.12	A1	At least one term correct, accept unsimplified
	0.27	A1	Final answer
		3	
(d)	$P(Y) = their (c) + 0.2 \times 0.4 \times 0.25 + 0.2 \times 0.6 \times 0.6  (= 0.362)$	B1 FT	their (c) + $e \times f \times g + e \times (1-f) \times h$ , $0 < g$ , $h \le 1$ , $e$ , $f$ consistent with their tree diagram, or correct
	$P(X Y) = \frac{their(c)}{their P(Y)} = \frac{0.27}{0.362}$	M1	their <b>4(c)</b> (or correct)/their previously calculated and identified P(Y) or a denominator involving 3 or 4 3-factor probability terms consistent with <i>their</i> tree diagram & third factor $0$
	$0.746, \frac{373}{500} \text{ or } \frac{135}{181}$	A1	(0.7458)
		3	

154. 9709_w20_ms_52 Q: 6

Question	Answer	Marks	Guidance
(a)	⁹ C ₆ (× ³ C ₃ )	М1	${}^{9}C_{k} \times n, k = 6, 3, n = 1,2$ oe Condone ${}^{9}C_{6} + {}^{3}C_{3}, {}^{9}P_{6} \times {}^{3}P_{3}$
	84	A1	Accept unevaluated.
		2	10
(b)	Number with 3 Baker children = ${}^{6}C_{2}$ or 15	B1	Correct seen anywhere, not multiplied or added
	Total no of selections = 9C_5 or 126 Probability = $\frac{\text{number of selections with 3 Baker children}}{\text{total number of selections}}$	M1	Seen as denominator of fraction
	$\frac{15}{126}$ , 0·119	A1	OE, e.g. $\frac{5}{42}$
	Alternative method for question 6(b)		
	$\frac{3}{9} \times \frac{2}{8} \times \frac{1}{7} \left( \times \frac{6}{6} \right) \left( \times \frac{5}{5} \right) \times {}^{5}C_{3}$	В1	$^5\text{C}_3$ (OE) or 10 seen anywhere, multiplied by fractions only, not added
	100	M1	$\boxed{\frac{3}{9} \times \frac{2}{8} \times \frac{1}{7} \left( \times \frac{6}{6} \right) \left( \times \frac{5}{5} \right) \times k, \ 1 \leqslant k, \ k \text{ integer}}$
	$\frac{15}{126}$ , 0·119	A1	OE, e.g. $\frac{5}{42}$
		3	





Question	Answer	Marks	Guidance
(c)	[Total no of arrangements = 9!] [Arrangements with men together = 8! × 2]	М1	9! – <i>k</i> or 362880 – <i>k, k</i> an integer<362 880
	Not together: 9! –		
	8! × 2	В1	8! × 2(!) or 80 640 seen anywhere
	282 240	A1	Exact value
	Alternative method for question 6(c)		
	7! × 8 × 7	B1	$7! \times k$ , k positive integer $> 1$
		M1	$m \times 8 \times 7$ , $m \times {}^{8}P_{2}$ , $m \times {}^{8}C_{2}$ m positive integer $> 1$
	282 240	A1	Exact value
		3	
(d)	7!×2×7	M1	7! × $k$ , $k$ positive integer > 1 If 7! not seen, condone $7 \times 6 \times 5 \times 4 \times 3 \times 2 \times (1) \times k$ or $7 \times 6! \times k$ only
		M1	$m \times 2 \times 7$ , m positive integer $> 1$
	70 560	A1	
		3	

 $155.\ 9709_w20_ms_53\ Q\hbox{:}\ 5$ 

Question	Answer	Marks	Guidance
(a)	Total number of ways = $\frac{8!}{3!2!}$ (= 3360)	B1	Correct unsimplified expression for total number of ways
	Number of ways with V and E in correct positions = $\frac{6!}{2 \times 2!}$ (= 180)	B1	6! alone or as numerator in an attempt to find the number of ways with V and E in correct positions.  No $\times$ $\pm$
	Probability = $\frac{180}{3360} \left( = \frac{3}{56} \right)$ or 0.0536	B1 FT	Final answer from <i>their</i> $\frac{6!}{2 \times 2!}$ divided by <i>their</i> total number of ways
	Alternative method for question 5(a)		
	$\frac{1}{8} \times \frac{3}{7}$	М1	$\frac{a}{8} \times \frac{b}{7}$ seen, no other terms (correct denominators)
		М1	$\frac{1}{c} \times \frac{3}{d}$ seen, no other terms (correct numerators)
	$\frac{3}{56}$ or 0.0536	A1	
		3	





Question	Answer	Marks	Guidance
(b)	Rs together and Es together: 5! (120)	В1	Alone or as numerator of probability to represent the number of ways with Rs and Es together, no ×, +, –
	Es together: $\frac{6!}{2!}$ (= 360)	В1	Alone or as denominator of probability to represent the number of ways with Es together, no $\times$ , + or –
	Probability = $\frac{5!}{\frac{6!}{2!}}$	М1	$\frac{their 5!}{their \frac{6!}{2!}} \text{ seen}$
	$\frac{1}{3}$	A1	OE
	Alternative method for question 5(b)		
	P(Rs together and Es together): $\frac{5!}{their}$ total number of ways $\left(=\frac{1}{28}\right)$	В1	
	P(Es together): $\frac{6!}{\frac{2!}{their} \text{ total number of ways}} \left( = \frac{3}{28} \right)$	B1	Alone or as numerator of probability to represent the P(Rs and Es together), no $\times$ , +, –
	Probability = $\frac{\frac{1}{28}}{\frac{3}{28}}$	M1	Alone or as denominator of probability to represent the P(Es together), no $\times$ , + or –
	$\frac{1}{3}$	A1	OE, $\frac{their \frac{1}{28}}{their \frac{3}{28}}$ seen
		4	

156. 9709_m19_ms_62 Q: 1

Question	Answer	Marks	Guidance
(i)	$0.6 \times 0.2 + 0.4 \times 0.32$	M1	Addition of 2 two-factor terms $0.6 \times a + 0.4 \times b$
	$=0.248, \frac{31}{125}$	A1	CAO
		2	
(ii)	Method 1		
	$P(GS Not Red socks) = \frac{0.4 \times 0.68}{1 - (i)}$	B1	Correct [unsimplified] numerator seen in fraction
		M1	1 – their (i) as denominator in fraction
	$= 0.362, \frac{17}{47}$	A1	
	Method 2		
	P(GS Not Red socks) = $\frac{0.4 \times 0.68}{0.6 \times 0.8 + 0.4 \times 0.68}$	B1	Correct [unsimplified] numerator seen in fraction
		M1	Correct or (their (i))' as denominator in fraction
	$= 0.362, \frac{17}{47}$	A1	
		3	





 $157.\ 9709_s19_ms_61\ Q:\ 2$ 

Question	Answer	Marks	Guidance
	Jameel: P(plum) = $\frac{5}{8}$ , Rosa: P(plum) = $\frac{x}{x+6}$ $\frac{5}{8} \times \frac{x}{x+6} = \frac{1}{4}$	M1	Their 2 probabilities for P(plum) multiplied and equated to 1/4
		A1	Correct equation oe
	(x =) 4	A1	SC correct answer with no appropriate equations i.e. common sense B1
		3	

 $158.\ 9709_s19_ms_61\ Q:\ 3$ 

Question	Answer	Marks	Guidance
	$P(X) = \frac{3}{36} \left( \frac{1}{12} oe \right)$	B1	
	$P(Y) = \frac{12}{36} \left( \frac{1}{3} oe \right)$	B1	
	$P(X \cap Y) = \frac{1}{36}$	M1	Independent method to find $P(X\cap Y)$ without multiplication, either stated or by listing or circling numbers on a probability space diagram. OR condititional prob with a single fraction numerator
	$P(X) \times P(Y) = P(X \cap Y)$ , independent	A1	Numerical comparison and conclusion, www
		4	

 $159.\ 9709_s19_ms_62\ Q:\ 1$ 

Question	Answer	Marks	Guidance
	$P(S) = \frac{1}{2}$	BI	3.
	$P(T) = \frac{16}{36} \left(\frac{4}{9}\right)$	B1	
	$P(S \cap T) = \frac{10}{36} \left( \frac{5}{18} \right)$	M1	$P(S \cap T)$ found by multiplication scores M0 M1 awarded if <i>their</i> value is identifiable in their sample space diagram <b>or</b> Venn diagram <b>or</b> list of terms <b>or</b> probability distribution table (oe)
	$P(S) P(T) \neq P(S \cap T)$ so not independent	A1	8/36, 10/36 P(S) $\times$ P(T) and P( $S \cap T$ ) seen in workings and correct conclusion stated, www
	Alternative method for question 1		
	$P(S) = \frac{1}{2}$	B1	
	$P(7) = \frac{16}{36} \left(\frac{4}{9}\right)$	B1	
	$P(S \cap T) = \frac{10}{36} \left( \frac{5}{18} \right)$	M1	$P(S \cap T)$ found by multiplication scores M0 M1 awarded if <i>their</i> value is identifiable in their sample space diagram <b>or</b> Venn diagram <b>or</b> list of terms <b>or</b> probability distribution table (oe)
	$P(S T) = \frac{10}{16} \text{ or } P(T S) = \frac{10}{18}$	A1	conclusion stated, www Or 16/36, 10/18, P(T) and P(T S) seen in workings and correct
	$P(S T) \neq P(S)$ or $P(T S) \neq P(T)$ so not independent		conclusion stated, www
		4	





160. 9709_s19_ms_63 Q: 2

Question	Answer	Marks	Guidance
(i)	04 - R	B1	Fully correct labelled tree with correct probabilities for 'Send'
	0.4 R  0.4 R  0.6 NR  0.15 R  0.85 NR  0.5 Social media 0.4 NR	B1	Fully correct labelled branches with correct probabilities for the 'reply'
		2	.0,

Question	Answer	Marks	Guidance
(ii)	$P(email NR) = \frac{P(email \cap NR)}{P(NR)} = \frac{0.2 \times 0.85}{0.3 \times 0.6 + 0.2 \times 0.85 + 0.5 \times 0.4}$	М1	$\label{eq:problem} P(email) \times P(NR) \mbox{ seen as numerator of a fraction, consistent with } \\ \mbox{\it their} \mbox{ tree diagram}$
	$=\frac{0.17}{0.18+0.17+0.2}=\frac{0.17}{0.55}$	M1	Summing three appropriate 2-factor probabilities, consistent with <i>their</i> tree diagram, seen anywhere 0.55 oe (can be unsimplified) seen as denom of a fraction
	$=0.309, \frac{17}{55}$	A1	
		A1	Correct answer
		4	

 $161.\ 9709_w19_ms_61\ Q:\ 1$ 

Question	Answer	Marks	Guidance
	$0.8 \times 0.6 + 0.2(1-x) = 0.63$	M1	Equation of form $0.8 \times A + 0.2 \times B = C$ , A,B involving $1-x$ and $0.6$ or $0.4$ and $C = 0.63$ or $0.37$
	0.2x = 0.05	M1	Correct unsimplified equation
	x = 0.25	A1	
	Alternative method for question 1		
	$0.8 \times 0.4 + 0.2x = 1 - 0.63$	M1	Equation of form $0.8 \times A + 0.2 \times B = C$ , A,B involving x and 0.6 or 0.4 and $C = 0.63$ or 0.37
	0.2x = 0.05	M1	Correct unsimplified equation
	x = 0.25	A1	
		3	

 $162.\ 9709_w19_ms_62\ Q:\ 2$ 

Question	Answer	Marks	Guidance
(i)	$0.4x + 0.6 \times 2x = 0.36 \text{ or } 0.4(1-x) + 0.6(1-2x) = 0.64$	M1	0.4a + (1 - 0.4)b = 0.36 or 0.64, $a,b$ terms involving $x$
	$ \begin{array}{c} 1.6x = 0.36 \\ x = 0.225 \end{array} $	A1	Fully justified by algebra AG
		2	





Question	Answer	Marks	Guidance
(ii)	$P(H L') = \frac{0.4(1-x)}{1-0.36} = \frac{0.4 \times (1-0.225)}{0.64} = \frac{0.4 \times 0.775}{0.4 \times 0.775 + 0.6 \times 0.55}$	M1	Correct numerical numerator of a fraction. Allow unsimplified.
		M1	Denominator 0.36 or 0.64. Allow unsimplified.
	$\frac{31}{64}$ or 0.484	A1	
		3	

 $163.\ 9709_w19_ms_62\ Q{:}\ 7$ 

Question	Answer	Marks	Guidance
(i)	6! = 720	B1	Evaluated
		1	
(ii)	Total no of arrangements: $\frac{9!}{2!3!} = 30240$	B1	Accept unevaluated
	No with Ts together = $\frac{8!}{3!}$ = 6720	B1	Accept unevaluated
	With Ts not together: 30 240 – 6720	M1	correct or $\frac{9!}{m} - \frac{8!}{n} m, n$ integers > 1
			or their identified total – their identified Ts together
	23 520	A1	CAO
	Alternative method for question 7(ii)		
	$\frac{7!}{3!} \times \frac{8 \times 7}{2}$	B1	$7! \times (k > 0)$ in numerator, cannot be implied by 7P_2 , etc.
	5. 2	B1	$3! \times (k > 0)$ in denominator
		M1	$\frac{\textit{their 7!}}{\textit{their 3!}} \times {}^{8}C_{2} \text{ or } {}^{8}P_{2}$
	23 520	A1	CAO
	-0	4	

Question	Answer	Marks	Guidance
(iii)	Number of arrangements = $\frac{7!}{3!}$ Probability = $\frac{their \frac{7!}{3!}}{their \frac{9!}{3!2!}} = \frac{840}{30240}$	M1	their identified number of arrangements with T at ends  their identified total number of arrangements $\frac{7!}{or \frac{m}{9!}m, n}$ integers > 1
	$\frac{1}{36}$ or 0.0278	A1 2	Final answer
(iv)	OOT 4C2=6	M1	4C_x seen alone or 4C_x x $k \ge 1$ , $k$ an integer, $0 < x < 4$
	OOTT_ ⁴ C ₁ =4 OOOT_ ⁴ C ₁ =4 OOOTT = 1	A1	${}^{4}C_{2} \times k$ , $k = 1$ oe or ${}^{4}C_{1} \times m$ , $m = 1$ oe alone
		M1	Add 3 or 4 identified correct scenarios only, accept unsimplified
	(Total) = 15	A1	CAO, WWW Only dependent on 2nd M mark
		4	





164. 9709_w19_ms_63 Q: 1

Question	Answer	Marks	Guidance
(i)	$\frac{120}{300} = 0.4$	B1	OE
		1	
(ii)	P(male) × P(not piano) = $\frac{160}{300} \times \frac{225}{300} \left( \frac{8}{15} \times \frac{3}{4} \right) = \frac{2}{5}$	M1	$P(M) \times P(P')$ seen Can be unsimplified but the events must be named in a product
	As P(male $\cap$ not piano) also = $\frac{120}{300} = \frac{2}{5}$	A1	Numerical comparison and correct conclusion
	The events are <b>Independent</b>		
	Alternative method for question 1(ii)		
	P(male $\cap$ not piano) = $\frac{120}{300}$ ; P(not piano) = $\frac{225}{300}$	M1	P(M P') or P(P' M) unsimplified seen with <i>their</i> probs with correctly named events
	$P(M \mid \text{not piano}) = \frac{\frac{120}{300}}{\frac{225}{300}} = \frac{120}{225} = \frac{8}{15} = P(\text{male})$ or $P(\text{not piano} \mid M) = \frac{\frac{120}{300}}{\frac{160}{300}} = \frac{120}{160} = \frac{3}{4} = P(\text{not piano})$ Therefore the events are <b>Independent</b>	A1	Numerical comparison with P(M) or P(P') and correct conclusion
		2	

165. 9709_m18_ms_62 Q: 3

Question	Answer	Marks	Guidance
(i)	(10/160 =) 1/16, 0.0625	B1	OE
	~~	1	
(ii)	(90/160) = 9/16, 0.5625	B1	OE
		1	
(iii)	P(red/hatchback) = P(red hatchback) / P(hatchback) = 40/160 / 90/160	M1	Appropriate probabilities in a fraction
	= 4/9	A1	OE  Alm method: Direct from table  M1 for $40/a$ or $b/90$ , $a \ne 160$ A1 for $40/90$ oe
	•	2	

Question	Answer	Marks	Guidance
(iv)	$P(\text{red}) \times P(\text{hatchback}) = \frac{72}{160} \times \frac{90}{160} \neq \frac{40}{160}$	(M1	Use correct approach with appropriate probabilities substituted
	Not independent	A1)	Numerical comparison and conclusion stated
	OR: $P(\text{red/hatchback}) = 40/90 \text{ and } \frac{40}{90} \neq \frac{72}{160}$	(M1	Use correct approach with appropriate probabilities substituted
	Not independent	A1)	Numerical comparison and conclusion stated
		2	





166. 9709_s18_ms_62 Q: 2

Question	Answer	Marks	Guidance
(i)	Method 1 $P(M \cap H) = \frac{3}{4} \times \frac{3}{5} = \frac{9}{20} (0.45)$	B1	Seen, accept unsimplified
	$P(F \text{ or } M \cap H) = \frac{1}{4} + \frac{9}{20} = \frac{14}{20}$	M1	Numerical attempt at $P(F) + P(M \cap H)$
	4 20 20	A1	Correct unsimplified expression
	$=\frac{7}{10}$ (0.7) OE	A1	Correct final answer
	Method 2 $P(M \cap H') = \frac{3}{4} \times \frac{2}{5} = \frac{6}{20} (0.3)$	В1	Seen, accept unsimplified
	$P(F \text{ or } M \cap H) = 1 - P(M \cap H')$	М1	Numerical attempt at $1 - P(M \cap H')$
	$=1-\frac{3}{4}\times\frac{2}{5}$	A1	Correct unsimplified expression
	$=\frac{7}{10}$ (0.7) OE	A1	Correct final answer

Question	Answer	Marks	Guidance
(i)	Method 3 $P(F \cap H' \text{ or } H) = \frac{1}{4} \times \frac{1}{5} + \frac{1}{4} \times \frac{4}{5} + \frac{3}{4} \times \frac{3}{5}$	В1	$\frac{3}{4} \times \frac{3}{5} \left(\frac{9}{20}\right) \text{ or } \frac{1}{4} \times \frac{4}{5} \left(\frac{4}{20}\right) \text{ or } \frac{3}{4} \times \frac{3}{5} + \frac{1}{4} \times \frac{4}{5} \left(\frac{13}{20}\right) \text{ seen}$
	$=\frac{1}{20}+\frac{4}{20}+\frac{9}{20}$	M1	Numerical attempt at $P(F \cap H') + P(F \cap H) + P(M \cap H)$
	20 20 20	A1	Correct unsimplified expression
	$=\frac{7}{10}$ (0.7) oe	A1	Correct final answer
	Method 4 – Venn diagram style approach $P(F \cup H) = P(F) + P(H) - P(F \cap H)$	B1	$\frac{3}{4} \times \frac{3}{5} \left(\frac{9}{20}\right)$ or $\frac{1}{4} \times \frac{4}{5} \left(\frac{4}{20}\right)$ or $\frac{3}{4} \times \frac{3}{5} + \frac{1}{4} \times \frac{4}{5} \left(\frac{13}{20}\right)$ seen
	$= \frac{1}{4} + \frac{1}{4} \times \frac{4}{5} + \frac{3}{4} \times \frac{3}{5} - \frac{1}{4} \times \frac{4}{5}$	M1	Numerical attempt at $P(F) + P(H) - P(F \cap H)$
	$= \frac{1}{4} + \frac{4}{20} + \frac{9}{20} - \frac{4}{20}$	A1	Correct unsimplified expression
	$=\frac{7}{10}$ (0.7) oe	A1	Correct final answer
		4	





Question	Answer	Marks	Guidance
(ii)	Method 1 $(P(M) \times P(H) =) \frac{3}{4} \times their \frac{13}{20} = \frac{39}{80}$ $(P(M \cap H) =) \frac{3}{4} \times \frac{3}{5} = 0.45$	M1	Unsimplified, or better, legitimate numerical attempt at $P(M) \times P(H)$ and $P(M \cap H)$ Descriptors $P(M \cap H)$ and $P(M) \times P(H)$ seen, correct numerical evaluation and comparison, conclusion stated
	$\frac{39}{80}$ (0.4875) $\neq$ 0.45, not independent	A1	
	Method 2 $P(M H) = \frac{P(M \cap H)}{P(H)} = \frac{\frac{9}{20}}{\text{their } \frac{13}{20}} = \frac{9}{13}$ $P(M) = \frac{3}{4}$	M1	Unsimplified, or better, numerical attempt at $P(H)$ and $P(M \cap H)$ , $P(M)$
	$\frac{9}{13} \neq \frac{3}{4}$ , not independent	A1	Descriptors $P(M \cap H)$ , $P(H)$ and $P(M)$ OR $P(M H)$ and $P(M)$ seen, numerical evaluation and comparison, conclusion stated  Any appropriate relationship can be used, the M is awarded for an unsimplified, or better, numerical attempt at the terms required, the A mark requires the correct descriptors, numerical evaluation and comparison and the conclusion
		2	

167. 9709_s18_ms_63 Q: 3

Question	Answer	Marks	Guidance
(i)	(1-x) and 0.45 (or 0.3)	B1	Seen, either on tree diagram or elsewhere
	Beginners: $0.7 \times x + `0.45` \times `(1-x)` = 0.5$ Or Advanced: $`0.3` \times x + 0.55 \times `(1-x)` = 0.5$ Or $0.7 \times x + `0.45` \times `(1-x)` = `0.3` \times x + 0.55 \times `(1-x)`$	M1	One of the three correct probability equations
	x = 0.2 oe	A1	Correct answer
	Tota <mark>l:</mark>	3	
(ii)	$P(M \mid A) = \frac{P(M \cap A)}{P(A)} = \frac{0.2 \times 0.3}{0.5}$	M1	'i' $\times$ 0.3 as num or denom of a fraction
	P(A) 0.5	M1	0.5 (or $(1-\text{`i'}) \times 0.55 + \text{`i'} \times 0.3$ unsimplified) seen as denom of a fraction
	$=0.12\left(\frac{3}{25}\right)$	A1	Correct answer
	Total:	3	

168. 9709_w18_ms_61 Q: 7

Question	Answer	Marks	Guidance
(i)	52/160 = 13/40, 0.325	B1	oe
		1	
(ii)	P(boy) = 96/160: P(Music) = 52/160 P(boy and Music) = 40/160	M1	Use of $P(B) \times P(M) = P(B \cap M)$ , appropriate probabilities used
	96/160 × 52/160 ≠ 40/160: Not independent	A1	Numerical comparison and conclusion stated
		2	





Question	Answer	Marks	Guidance
'(iii)	Method 1		
	P(not Music/girl) = P(not Music and girl)/P(girl) (27/160) / (64/160)	М1	Appropriate probabilities in a fraction
	$=\frac{27}{64}$	A1	Correct answer www implies method
	Method 2		
	Direct from table	M1	27/a or b/64, a ≠ 160
	$\frac{27}{64}$	A1	Correct answer www implies method
		2	
(iv)	$P(B M) \times P(B NM) \times P(G NM)$ or $P(G M) \times P(B NM) \times P(B NM)$	M1	One scenario identified with 3 probs multiplied
	40/160 × 56/159 × 52/158 or 12/160 × 56/159 × 55/158	A1	One scenario correct (ignore multiplying factor)
	× 3! × 3!/2!	B1	Both multiplying factors correct
	0.17387 0.02759 P = 0.17387 + 0.02759	M1	Both cases attempted and added (multiplying factor not required), accept unsimplified
	= 0.201 Note: If score in this part is 0, award SCB1 for $\frac{1}{160} \times \frac{1}{159} \times \frac{1}{158} \times k$ , for positive integer $k$ , seen	A1	Correct answer, oe
Question	Answer	Marks	Guidance
(iv)	Method 2		101
	$ \frac{\binom{40}{1} \times \binom{56}{1} \times \binom{52}{1} + \binom{12}{1} \times \binom{56}{2}}{\binom{160}{3}} $	M1	One scenario identified with 2 or 3 combination multiplied
		A1	One scenario correct
		B1	Denominator correct
	116480+18480 669920	М1	Both scenarios attempted, and added, seen as a numerator of a fraction
	1687 8374	A1	Correct answer, oe
		5	





169. 9709_w18_ms_62 Q: 1

Question	Answer	Marks	Guidance
(i)	11! 4!4!2!	M1	$\frac{11!}{4 \times k} or \frac{11!}{2 \times k}$ , k a positive integer
	= 34650	A1	Correct final answer
		2	
(ii)	Method 1		
	$P(SS) = \frac{4}{11} \times \frac{3}{10} = \frac{12}{110} \ (= 0.10911)$	B1	One of P(SS), P(PP) or P(II) correct, allow unsimplified
	$P(PP) = \frac{2}{11} \times \frac{1}{10} = \frac{2}{110} (= 0.01818)$ $P(II) = \frac{4}{11} \times \frac{3}{10} = \frac{12}{110} (= 0.10911) \frac{4}{11} \times \frac{3}{10}$	M1	Sum of probabilities from 3 appropriate identifiable scenarios (either by labelling or of form $\frac{4}{11} \times \frac{a}{b} + \frac{2}{11} \times \frac{c}{b} + \frac{4}{11} \times \frac{a}{b}$ where $a = 4$ or 3, $b = 11$ or 10, $c = 2$ or 1)
	$Total = \frac{26}{110} = \frac{13}{55} \text{ oe } (0.236)$	A1	Correct final answer
	Method 2		
	Total number of selections = ${}^{11}C_2 = 55$ Selections with 2 Ps = 1	B1	Seen as the denominator of fraction (no extra terms) allow unsimplified
	Selections with 2 Ss = ${}^{4}C_{2} = 6$ Selections with 2 Is = ${}^{4}C_{2} = 6$ ,	M1	Sum of 3 appropriate identifiable scenarios (either by labelling or values, condone use of permutations. May be implied by 2,12,12)
	Total selections with 2 letters the same = $13$ Probability of 2 letters the same = $\frac{13}{55}$ oe (0.236)	A1	Correct final answer, without use of permutations
		3	

170.  $9709_{\text{w}}18_{\text{ms}}63$  Q: 3

Question	Answer		Marks	Guidance
(i)	First Ball  R 3/8	Second Ball  R 2/8 B 5/8 Y 1/8 R 3/8 B 4/8 1/8	В1	Fully correct labelled tree and correct probabilities for 'First Ball'
			B1	Correct probabilities (with corresponding labels) for 'Second Ball'
			2	
(ii)	$P(RR) + P(BB) = 3/8 \times 2/8 + 5/8 \times 4/8 =$	= 3/32 + 5/16	М1	Correct unsimplified expression from their tree diagram, $\Sigma p = 1$ on each branch
	= 13/32 (0.406)		A1	Correct answer
			2	





Question	Answer	Marks	Guidance
(iii)	P(RB) = 3/8×5/8 = 15/64	M1	$P(\text{1st ball red}) \times P(\text{2nd ball blue})$ from their tree diagram seen unsimplified as numerator or denominator of a fraction Allow $\Sigma p \neq 1$ on each branch
	$P(B) = 3/8 \times 5/8 + 5/8 \times 4/8 = 35/64$	M1	Correct unsimplified expression for P(B) from their tree diagram seen as denominator of a fraction. Allow $\Sigma p \neq 1$ on each branch
	$P(R B) = P(RB) / P(B) = (15/64) \div (35/64) = 3/7 (0.429)$	A1	Correct answer
		3	

 $171.\ 9709_w18_ms_63\ Q:\ 4$ 

Question	Answer	Marks	Guidance
(i)	Total number of selections = ${}^{12}C_7 = 792$	B1	Seen as denominator of fraction
	Selections with boy included = ${}^{11}C_6$ or ${}^{12}C_7 - {}^{11}C_7 = 462$	M1	Correct unsimplified expression for selections with boy included seen as numerator of fraction
	Probability = 462/792 = 7/12 (0.583)	A1	Correct answer
	OR		100
	prob of boy not included = $11/12 \times 10/11 \times \times 5/6 = 5/12$	B1	Correct unsimplified prob
	1 – 5/12	M1	Subtracting prob from 1
	= 7/12	A1	Correct answer
		3	

Question	Answer	Marks	Guidance
(ii)	Method 1	_	4
	Scenarios are: $2G + 5B$ : ${}^{4}C_{2} \times {}^{8}C_{5} = 336$	B1	One unsimplified product correct
	$ 3G + 4B:   {}^{4}C_{3} \times {}^{8}C_{4} = 280  4G + 3B:   {}^{4}C_{4} \times {}^{8}C_{3} = 56 $	M1	No of selections (products of n C $_r$ and n P $_r$ ) added for 2, 3 and 4 girls with no of girls and no of boys summing to 7
	Total = 672	A1	Correct total
	Probability = 672/792 (28/33) (0.848)	A1ft	Correct answer - 'total'/( 'total no of selections' from i)
	Method 2		
	$0G + 7B$ ${}^{4}C_{0} \times {}^{8}C_{7} = 8$	B1	One unsimplified no of selections correct
		M1	No of selections (products of n C $_r$ and n P $_r$ ) added for 0 and 1 girls with no of girls and no of boys summing to 7
	( ¹² C ₇ – 120)/792 or 1 – 120/792	A1	792 – 120 = 672 or 1 – 120/792
	Probability = 672/792 (28/33) (0.848)	A1ft	'672' over '792' from i
	Method 3 (probability)		
		B1	One correct unsimplified prob for 0 or 1
	= 1 - 1/99 - 14/99	M1	Subtracting 'P(0)' and 'P(1)' (using products of 7 fractions with denominators from 12 to 6) from 1
		A1	Both probs correct unsimplified
	= 84/99 = 28/33	A1ft	1 - 'P(0)' - 'P(1)'





Question	Answer	Marks	Guidance
(ii)	Method 4 (probability)		
	P(2) + P(3) + P(4) =	B1	One correct unsimplified prob for 2, 3 or 4
	42/99 + 35/99 + 7/99	M1	Adding 'P(2)', 'P(3)' and P(4)' (using products of 7 fractions with denominators from 12 to 6)
		A1	Three probs correct unsimplified
	= 84/99 = 28/33	A1ft	'P(2)'+ 'P(3)' + 'P(4)'
		4	

172. 9709_s17_ms_61 Q: 2

Question	Answer	Marks	Guidance
2	P(R) = 4/36 = 1/9	M1	Attempt at $P(R)$ by probability space diag or listing more than half the options, must see a prob, just a list is not enough
	P(T) = P(O, E) + P(E, O) = 1/4 + 1/4 = 1/2  OR  P(R T) = 1/9	M1	Attempt at $P(T)$ or $P(R T)$ involving more than half the options
	$P(R \cap T) = P(3, 4) + P(4, 3) = 2/36 = 1/18 \text{ OR } P(R T) = 1/9$	B1	Value stated, not from $P(R) \times P(T)$ e.g. from probability space diagram
	As $P(R) \times P(T) = P(R \cap T)$ OR as $P(R T) = P(R)$	М1	Comparing product values with $P(R \cap T)$ , or comparing $P(R T)$ with $P(R)$
	The events are independent.	A1	Correct conclusion must have all probs correct
	Total:	5	

173. 9709_s17_ms_61 Q: 3

Question	Answer	Marks	Guidance
(i)	7/10 W  7/10 D  1/3 D  1/5 D  1/3 L  3/10 W  1/20 D  13/20 L	M1	Correct shape i.e. 3 branches then 3 by 3 branches, labelled and clear annotation Condone omission of lines for first match result providing the probabilities are there.
		A1	All correct probs with fully correct shape and probs either fractions or decimals not 1.5/5 etc.
	Total:	2	





Question	Answer	Marks	Guidance
(ii)	$P(L_1 \text{ given } W_2) = \frac{P(L_1 \cap W_2)}{P(W_2)}$	M1	Attempt at $P(L1 \cap W2)$ as a two-factor prod only as num or denom of a fraction
	$=\frac{1/5\times3/10}{3/5\times7/10+1/5\times1/3+1/5\times3/10}$	M1	Attempt at P(W2) as sum of appropriate 3 two-factor probs OE seen anywhere
		A1	Unsimplified correct P(W2) num or denom of a fraction
	$= \frac{3/50}{41/75} = 9/82(0.110)$	A1	
	Total:	4	

174. 9709_s17_ms_63 Q: 1

Question	Answer	Marks	Guidance
	P(6) = 0.3	B1	soi
	P(sum is 9) = P(3, 6) + P(4, 5) + P(5, 4) + P(6, 3)	M1	Identifying the four ways of summing to 9 (3,6), (6,3) (4,5) and (5,4)
	= (0.03 + 0.02) × 2	M1	Mult 2 probs together to find one correct prob of (3,6), (6,3) (4,5) or (5,4) unsimplified
	= 0.1	A1	OE OE
	Total:	4	

 $175.\ 9709_s17_ms_63\ Q{:}\ 3$ 

(i)	$P(S) = 0.65 \times 0.6 + 0.35 \times 0.75$	M1	Summing two 2-factor probs or 1 – (sum of two 2-factor probs)
	= 0.653 (261/400)	A1	
	Total:	2	

Question	Answer	Marks	Guidance
(ii)	$P(Std L) = \frac{P(Std \cap L)}{P(L)} = \frac{0.35 \times 0.25}{1 - 0.6525} = 0.0875/0.3475$	M1	diagram in 3(i).
	= 0.252 (35/139)	A1	
	Total:	3	





176. 9709_w17_ms_61 Q: 5

Question	Answer	Marks	Guidance
(i)	GNS	B1	Must see at least 4 probs correct including one with an x in, correct shape
	$ \begin{array}{c c}  & x \\ \hline 0.82 & 1-x & \text{Not GNS} \\ \hline 0.18 & & & & \\ \hline 0.9 & & & & \\ \hline 0.1 & & & & \\ \hline Not GNS & & & \\ \end{array} $	В1	Shape, clear labels/annotation and all probs correct
		2	
(ii)	$0.82x + 0.18 \times 0.9 = 0.285$	M1	Eqn with x in, two 2-factors on one side
	x = 0.15	A1	
		2	
(iii)	$P(E \mid notGNS) = \frac{P(E \cap notGNS)}{P(notGNS)}$	M1	Attempt at P(E∩not GNS) seen as num or denom of fraction
	P(notGNS)	M1	Attempt at P(not GNS) seen anywhere
	$= \frac{0.82 \times 0.85}{1 - 0.285} = 0.975$	A1	Correct answer
		3	

177.  $9709_{\text{w}17}_{\text{ms}}63$  Q: 3

Question	Answer	Marks	Guidance
(i)	0.85 Pass	M1	Correct shape
	0.65 Pass	A1	All correct labels and probabilities
	0.15 Fail .		
	0.35		
	Fail		
		2	

Question	Answer	Marks	Guidance
(ii)	$P(F \mid P) = \frac{P(F \cap P)}{P(P)}$	M1	$\mathbf{P}(P)$ consistent with their tree diagram seen anywhere
	$= \frac{\stackrel{\checkmark}{0.15 \times 0.65}}{0.85 + 0.15 \times 0.65} \text{ or } \frac{0.15 \times 0.65}{1 - 0.15 \times 0.35}$	A1	Correct unsimplified $P(P)$ seen as num or denom of a fraction
	$=\frac{0.0975}{0.9475}$	М1	$\mathrm{P}(F \cap P)$ found as correct product or consistent with their tree diagram seen as num or denom of a fraction
	$=\frac{39}{379}=0.103$	A1	
		4	

 $178.\ 9709_w17_ms_63\ Q:\ 6$ 

Question	Answer	Marks	Guidance
(i)	¹⁸ P ₅	M1	18 P _x or y P ₅ OE seen, $0 < x < 18$ and $5 < y < 18$ , can be mult by $k \ge 1$
	= 1 028 160	A1	
		2	





Question	Answer	Marks	Guidance
(ii)	EITHER: e.g. ***(CCCCC)******* in 5!×14 ways	(B1	5! OE mult by $k \geqslant 1$ , considering the arrangements of cars next to each other
	= 1680	B1	Mult by 14 OE, (or 14 on its own) considering positions within the line
	P (next to each other) = 1680/1 028 160	M1	Dividing by (i) for probability
	P(not next to each other) = 1 - 1680/1 028 160	M1	Subtracting prob from 1 (or their '5! × 14' from (i))
	$= 0.998 \left(\frac{611}{612}\right)$ OE	A1)	
	$\frac{OR1:}{\frac{5! \times 14!}{18!}} = 0.001634$	(B1	5! OE mult by $k\geqslant 1$ (on its own or in numerator of fraction) considering the arrangements of cars next to each other
		B1	Multiply by 14!, (or 14! on its own) considering all ways of arranging spaces with 5 cars together
		M1	Dividing by 18!, total number of ways of arranging spaces
	1 – 0.001634	M1	Subtracting prob from 1 (or '5! × 14!' from 18!)
	= 0.998(366)	A1)	
	OR2: 4 together - 2×5!×14C12 = 21 840 3, 1, 1 - 3×5!×14C11 = 131 040 3, 2 - 2×5!×14C12 = 21 840 2,2,1 - 3×5!×14C11 = 131 040 2,1,1,1 - 4×5!×14C10 = 480 480	(M1	Listing the six correct scenarios (only): 4 together; 3 together and 2 separate; 3 together and 2 together; two sets of 2 together and 1 separate; 2 together and 3 separate; 5 separate.
	$1,1,1,1,1 - 5! \times 14C9 \text{ or } 14P5 = 240 \text{ 240}$	M1	Summing total of the six scenarios, at least 2 correct unsimplified
Question	Answer	Marks	Guidance
	Total = 1 026 480	A1	Total of 1 026 480
		M1	Dividing their 1 026 480 by their <b>6(i)</b>
	1 026 480 ÷1 028 160 = 0.998 (366)	A1)	
Question		5	
(iii)	Answer	Marks	Guidance
_	R(5) W(4) B(3) Scenarios No. of ways		
_	R(5) W(4) B(3) Scenarios No. of ways 1 1 1 = $5 \times 4 \times 3 = 60$ 0 1 2 = $4 \times {}^{3}C_{2} = 12$	Marks	
_	R(5) W(4) B(3) Scenarios No. of ways 1 1 1 = $5 \times 4 \times 3 = 60$ 0 1 2 = $4 \times {}^{3}C_{2} = 12$ 0 2 1 = ${}^{4}C_{2} \times 3 = 18$ 1 0 2 = $5 \times {}^{3}C_{2} = 15$	Marks B1	$5C1 \times 4C1 \times 3C1$ or better seen i.e. no. of ways with 3 different colours
_	R(5) W(4) B(3) Scenarios No. of ways 1 1 1 = $5 \times 4 \times 3 = 60$ 0 1 2 = $4 \times {}^{3}C_{2} = 12$ 0 2 1 = ${}^{4}C_{2} \times 3 = 18$	Marks B1 M1	$5C1 \times 4C1 \times 3C1$ or better seen i.e. no. of ways with 3 different colours  Any of 5C_2 or 4C_2 or 3C_2 seen multiplied by $k > 1$ (can be implied)
_	R(5) W(4) B(3) Scenarios No. of ways 1 1 1 1 = $5 \times 4 \times 3 = 60$ 0 1 2 = $4 \times {}^{3}C_{2} = 12$ 0 2 1 = ${}^{4}C_{2} \times 3 = 18$ 1 0 2 = $5 \times {}^{3}C_{2} = 15$ 2 0 1 = ${}^{5}C_{2} \times 3 = 30$ 1 2 0 = $5 \times {}^{4}C_{2} = 30$	Marks B1 M1 A1	$5C1 \times 4C1 \times 3C1$ or better seen i.e. no. of ways with 3 different colours  Any of 5C_2 or 4C_2 or 3C_2 seen multiplied by $k > 1$ (can be implied)  2 correct unsimplified 'no. of ways' other than $5C1 \times 4C1 \times 3C1$ Summing no more than 7 scenario totals containing at least 6 correct
_	R(5) W(4) B(3) Scenarios No. of ways 1 1 1 = $5 \times 4 \times 3 = 60$ 0 1 2 = $4 \times {}^{3}C_{2} = 12$ 0 2 1 = ${}^{4}C_{2} \times 3 = 18$ 1 0 2 = $5 \times {}^{3}C_{2} = 15$ 2 0 1 = ${}^{5}C_{2} \times 3 = 30$ 1 2 0 = $5 \times {}^{4}C_{2} = 30$ 2 1 0 = ${}^{5}C_{2} \times 4 = 40$	Marks B1 M1 A1 M1	$5C1 \times 4C1 \times 3C1$ or better seen i.e. no. of ways with 3 different colours  Any of 5C_2 or 4C_2 or 3C_2 seen multiplied by $k > 1$ (can be implied)  2 correct unsimplified 'no. of ways' other than $5C1 \times 4C1 \times 3C1$ Summing no more than 7 scenario totals containing at least 6 correct
_	R(5) W(4) B(3) Scenarios No. of ways 1 1 1 1 = $5 \times 4 \times 3 = 60$ 0 1 2 = $4 \times {}^{3}C_{2} = 12$ 0 2 1 = ${}^{4}C_{2} \times 3 = 18$ 1 0 2 = $5 \times {}^{3}C_{2} = 15$ 2 0 1 = ${}^{5}C_{2} \times 3 = 30$ 1 2 0 = $5 \times {}^{4}C_{2} = 30$ 2 1 0 = ${}^{5}C_{2} \times 4 = 40$ Total = 205	Marks B1 M1 A1 M1	$5C1 \times 4C1 \times 3C1$ or better seen i.e. no. of ways with 3 different colours  Any of 5C_2 or 4C_2 or 3C_2 seen multiplied by $k > 1$ (can be implied)  2 correct unsimplified 'no. of ways' other than $5C1 \times 4C1 \times 3C1$ Summing no more than 7 scenario totals containing at least 6 correct
_	R(5) W(4) B(3) Scenarios  No. of ways  1	Marks B1 M1 A1 A1	$5C1 \times 4C1 \times 3C1$ or better seen i.e. no. of ways with 3 different colours  Any of 5C_2 or 4C_2 or 3C_2 seen multiplied by $k > 1$ (can be implied)  2 correct unsimplified 'no. of ways' other than $5C1 \times 4C1 \times 3C1$ Summing no more than 7 scenario totals containing at least 6 correct scenarios
_	R(5) W(4) B(3) Scenarios No. of ways 1 1 1 1 = $5 \times 4 \times 3 = 60$ 0 1 2 = $4 \times {}^{3}C_{2} = 12$ 0 2 1 = ${}^{4}C_{2} \times 3 = 18$ 1 0 2 = $5 \times {}^{3}C_{2} = 15$ 2 0 1 = ${}^{5}C_{2} \times 3 = 30$ 1 2 0 = $5 \times {}^{4}C_{2} = 30$ 2 1 0 = ${}^{5}C_{2} \times 4 = 40$ Total = 205	Marks B1 M1 A1 M1 A1	$5C1 \times 4C1 \times 3C1$ or better seen i.e. no. of ways with 3 different colours  Any of 5C_2 or 4C_2 or 3C_2 seen multiplied by $k > 1$ (can be implied)  2 correct unsimplified 'no. of ways' other than $5C1 \times 4C1 \times 3C1$ Summing no more than 7 scenario totals containing at least 6 correct scenarios
_	R(5) W(4) B(3) Scenarios  No. of ways  1	Marks B1 M1 A1 M1 A1 M1 M1	$5C1 \times 4C1 \times 3C1$ or better seen i.e. no. of ways with 3 different colours  Any of 5C_2 or 4C_2 or 3C_2 seen multiplied by $k > 1$ (can be implied)  2 correct unsimplified 'no. of ways' other than $5C1 \times 4C1 \times 3C1$ Summing no more than 7 scenario totals containing at least 6 correct scenarios  Seeing ' ${}^{12}C_3$ –', considering all selections of 3 cars  Subt 5C_3 OE, removing only red selections
_	R(5) W(4) B(3) Scenarios  No. of ways  1  1  1	Marks B1 M1 A1 M1 A1 M1 M1 M1	$5C1 \times 4C1 \times 3C1$ or better seen i.e. no. of ways with 3 different colours  Any of 5C_2 or 4C_2 or 3C_2 seen multiplied by $k > 1$ (can be implied)  2 correct unsimplified 'no. of ways' other than $5C1 \times 4C1 \times 3C1$ Summing no more than 7 scenario totals containing at least 6 correct scenarios  Seeing ' ${}^{12}C_3$ —', considering all selections of 3 cars  Subt 5C_3 OE, removing only red selections  Subt 4C_3 OE, removing only white selections





179. 9709_m16_ms_62 Q: 3

(i)	$P(R) [ (1, 4), (2,5), (3,6), (4,7), (5,8) ] \times 2/64$ = 10/64	M1 A1	2	List of at least 4 different options or possibility space diagram Correct answer
(ii)	$P(S) = [(3,8)(3,7)(4,8)(4,7)(4,6)(4,5)(5,8)  (5,7)(5,6)(6,8)(6,7)(7,8)] \times 2 +  (5,5)(6,6)(7,7)(8,8)  = 28/64$	M1	2	List of at least 14 different options or ticks  oe from possibility space  Correct answer
(iii)	$P(R \cap S) = 4/64$ $4/64 \neq 10/64 \times 28/64$ Events are not independent	B1 M1	3	Comparing their $P(R \cap S)$ with (i) ×(ii) with values Correct answer

 $180.\ 9709_m16_ms_62\ Q:\ 5$ 

(i)	P(Abroad given camping)	M1	Attempt at $P(A \cap C)$ seen alone anywhere
	$= \frac{P(A \cap C)}{P(A \cap C) + P(H \cap C)}$	A1	Correct answer seen as num or denom of a fraction
	= 0.35×0.15	M1	Attempt at $P(C)$ seen anywhere
	$0.35 \times 0.15 + 0.65 \times 0.4$	A1	Correct unsimplified answer seen as num or denom of a fraction
	$= \frac{0.0525}{0.3125}$		or denom of a fraction
	= 0.168	<b>A1</b> 5	Correct answer
(ii)	$(0.65)^{n} < 0.002$	M1	Eqn with 0.65 or 0.35, power <i>n</i> , 0.002 or 0.998
	$n > \lg (0.002)/\lg(0.65)$	M1	Attempt to solve their eqn by logs or trial
	n = 15	<b>A1</b> 3	and error need a power Correct answer

181. 9709_s16_ms_61 Q: 3

(i)	P (cup of coffee) = $0.6 \times 0.9 + 0.4 \times 0.3$ = $0.66$	M1 A1 [2]	Summing two 2-factor probabilities Correct answer accept 0.660
(ii)	P(Not on time   no cup of coffee)	M1	0.4×0.7 seen as num or denom of a fraction
<b>**</b>	$= \frac{P(\text{noton time } \cap \text{nocup})}{P(\text{nocup})} = \frac{0.4 \times 0.7}{1 - 0.66}$	M1	Attempt at P(no cup) as $0.1 \times p_1 + 0.7 \times p_2$ or as $1 - (i)$ seen anywhere
	$=\frac{0.28}{0.34}=0.824$	<b>A1</b> [3]	





182. 9709_s16_ms_62 Q: 1

Qu	Answer	Marks	Notes
(i)	0.8 M 0.65 T 0.2 NM 0.5 M 0.07 C 0.5 NM HC 1 M	M1	Correct shape with either one branch after HC or 2 branches with 0 prob seen correct Labelled and clear annotation
	NM	<b>A1</b> [2]	All probs correct
(ii)	$P(C \mid milk) = \frac{P(coffee \cap milk)}{P(milk)}$ $= \frac{0.28 \times 0.5}{0.65 \times 0.8 + 0.28 \times 0.5 + 0.07(\times 1)}$ 0.14	M1	Attempt at P(coffee∩ milk)as a two-factor prod only seen as num or denom of a fraction  Summing appropriate three 2-factor products seen anywhere (can omit the 1)
	$= \frac{0.14}{0.73}$ $= 0.192$	A1 [3]	Correct answer oe

183. 9709_s16_ms_63 Q: 1

Qu	Answer	J	Ma	rks	Guidance
(i)	Wears Not Total specs wears specs				
	RH 6 19 25 Not 2 3 5		B1		One correct row or col including total other than the Total row/column
	Total 8 22		<b>B</b> 1	[2]	All correct
(ii)	P(X) = 25/30, P(Y) = 8/30		M1		P(X) or $P(Y)$ from their table or correct from question (denom 30) oe
	$P(X) \times P(Y) = 25/30 \times 8/30 = 200/900 = 2/9$ $P(X \cap Y) = 6/30 = 1/5 \neq P(X) \times P(Y)$		M1		Comparing their $P(X) \times P(Y)$ (values substituted) with their evaluated $P(X \cap Y)$ – not $P(X) \times P(Y)$
	Not independent		<b>A1</b>	[3]	





184. 9709_w16_ms_61 Q: 6

(i)	$P(B, B) = 1/4 \times 2/5$	M1		Multiplying two different probs
	= 1/10	<b>A1</b>	[2]	
(ii)	P(X=1) = P(R,R) + P(B,B) = 3/4 × 4/5 + 1/10 = 14/20 (7/10)	M1 M1 A1	[3]	Finding P(R, R) (=3/5) Summing two options
(iii)	P(B B)	M1		their (i) seen as num or denom
	$= \frac{P(B \cap B)}{P(B)} = \frac{1/10}{3/4 \times 1/5 + 1/4 \times 2/5}$	M1		of a fraction $\sqrt[3]{4} \times p_1 + \sqrt[1]{4} \times p_2$ seen anywhere
		<b>A1</b>		1/4 (unsimplified) seen as num or denom of a fraction, www
	= 2/5	A1	[4]	

185.  $9709_{ms_62}$  Q: 1

$P(C \text{ given L}) = \frac{P(C \cap L)}{P(L)}$	M1		$P(C \cap L)$ seen as num or denom of a fraction
$= \frac{0.65 \times 0.1}{0.65 \times 0.1 + 0.3 \times 0.15 + 0.05 \times 0.6}$	<b>A1</b>	2	Correct unsimplified $P(C \cap L)$ as numerator
= 0.065	M1		Summing three 2-factor products seen anywhere
0.14	Al		0.14 (unsimplified) seen as num or denom of a fraction
$=0.464, \frac{13}{28}$	A1	[5]	oe

186. 9709_w16_ms_63 Q: 4

		A	-	The same of				
4 (i)	64/250, 0.256		ľ		B1	[1]	oe	
(ii)	190/250, 0.76(0)				B1	[1]	oe	

(iii)	P(X) = 80/250 = 8/25	M1		attempt at $P(X)$
	P(Y) = 100/250 = 2/5	M1		attempt at P(Y)
	$P(X \cap Y) = 32/250 = 16/125$	B1		oe
	$P(X) \times P(Y) = \frac{8}{25} \times \frac{2}{5} = \frac{16}{125}$	M1		comparing $P(X) \times P(Y)$ and $P(X \cap Y)$ so long as independence has not been assumed
	Since $P(X) \times P(Y) = P(X \cap Y)$ therefore independent	A1	[5]	correct answer with all working correct





 $187.\ 9709_s15_ms_61\ Q:\ 3$ 

(i)	$P(A) = \frac{1}{3} \times \frac{2}{3} + \frac{2}{3} \times \frac{1}{3} = \frac{4}{9}$ $P(B) = \frac{27}{36} = \frac{3}{4}$ $P(A \cap B) = \frac{12}{36} = \frac{1}{3}$ $P(A) \times P(B) = \frac{4}{9} \times \frac{3}{4} = \frac{1}{3}$ Independent as $P(A \cap B) = P(A) \times P(B)$	M1 M1 B1 M1 A1 [5]	Sensible attempt at $P(A)$ Sensible attempt at $P(B)$ correct $P(A \cap B)$ Cf $P(A \cap B)$ with $P(A) \times P(B)$ need at least 1 correct Correct conclusion following all correct working
(ii)	Not mutually exclusive because $P(A \cap B) \neq 0$ Or give counter example e.g. 1 and 6	B1√[1]	ft their $P(A \cap B)$

188.  $9709_s15_ms_61~Q:4$ 

(i) 
$$(1-x)0.9 + x \times 0.24 = 0.801$$

$$x = 0.15$$
M1 Eqn with sum of two 2-factor probs = 0.801
Correct equation
Correct answer

(ii) 
$$P(\geqslant 100 \text{ times given } \leqslant 3 \text{ views})$$

$$\frac{P(\geqslant 100 \text{ times } \cap \geqslant 3 \text{ views})}{P(\geqslant 3 \text{ views})} =$$

$$\frac{P(\geqslant 100 \text{ times } \cap \geqslant 3 \text{ views})}{P(\geqslant 3 \text{ views})} =$$

$$\frac{0.85 \times 0.1}{0.85 \times 0.1 + 0.15 \times 0.76 \text{ or } 1 - 0.801}$$

$$= 0.427$$
B1 
$$0.85 \times 0.1 \text{ seen on its own as num or denom of a fraction}$$
Attempt at  $P(\geqslant 3 \text{ views}) \text{ either}$ 

$$(0.85 \times p_1 + 0.15 \times p_2) \text{ or } 1 - 0.801$$
seen anywhere
$$\text{Correct unsimplified } P(\geqslant 3 \text{ views})$$
as num or denom of a fraction}
$$\text{A1} \quad \text{[4]} \quad \text{Correct answer}$$

189. 9709_s15_ms_62 Q: 4

(i)	$0.3 \times 0.72 + 0.7 \times x = 0.783$	M1 A1		Eqn with sum of two 2-factor probs =0.783 Correct equation
	x = 0.81	A1	3	Correct answer

(ii)	$P(S \text{ given not like}) = \frac{P(S \cap NL)}{P(NL)}$	В1	0.3×0.28 seen on its own as num or denom of a fraction
	$= \frac{0.3 \times 0.28}{0.3 \times 0.28 + 0.7 \times 0.19 \text{ or } 1 - 0.783}$	M1	Attempt at P(NL) either $(0.3 \times p_1) + (0.7 \times p_2)$ or $1 - 0.783$ seen anywhere
	= 0.387 (12/31)	A1 A1 4	Correct unsimplified P(NL) as num or denom of a fraction Correct answer





 $190.\ 9709_w15_ms_62\ Q:\ 2$ 

P(no men) $\frac{{}^{9}C_{6}}{{}^{16}C_{6}} = \frac{84}{8008} = \frac{21}{2002} = \frac{3}{286}$	B1	⁹ C ₆ seen anywhere
9 8 7 6 5 4	B1 B1 3	¹⁶ C ₆ seen as denom of fraction oe Correct final answer
OR $\frac{9}{16} \times \frac{8}{15} \times \frac{7}{14} \times \frac{6}{13} \times \frac{5}{12} \times \frac{4}{11} = 0.0105$	B1 B1 B1	$(9 \times 8 \times 7 \times 6 \times 5 \times 4)$ seen anywhere Correct unsimplified denom Correct final answer

191. 9709_w15_ms_63 Q: 2

2	(i)	$P(X) = \frac{20}{28} \left(\frac{5}{7}\right) (0.714),71.4\%$	B1	1	oe
(	(ii)	$P(F) = \frac{20}{28} \times \frac{1}{4} \times \frac{8}{28} \times \frac{6}{10} = \frac{7}{20}$	M1	2	Summing two 2-factor probs created by One of ½ or ¾ multiplied by 20/28 or 8/28 Added to 4/10 or 6/10 × altn population prob
	iii)	$P(X F) = \frac{5/28}{7/20} = \frac{25}{49}(0.510)$	A1 M1	2	Correct answer  Their unsimplified country X probability
(1		$\frac{1(X Y)}{7/20} = \frac{1}{49}(0.310)$	A1	2	(5/28) as num or denom of a fraction Or (their fair hair population) ÷ (total fair hair pop)  Correct answer

192. 9709_w15_ms_63 Q: 3

3 (	(i)	$P(S) = \frac{3}{16}$	M1		Sensible attempt at P(S)
		$P(S) = \frac{3}{16}$ $P(T) = \frac{4}{16}$	M1		Sensible attempt at P(T)
		$P(S \cap T) = \frac{2}{16}$	B1		Correct $P(S \cap T)$
		$P(S) \times P(T) = \frac{3}{64} \neq \frac{2}{16}$	M1		comp $P(S) \times P(T)$ with $P(S \cap T)$ (their values), evaluated
		Not independent	A1	5	Correct conclusion following all correct working
(i	ii)	not exclusive since $P(S \cap T) \neq 0$ Or counter example e.g. 1 and 3 Or $P(SUT) \neq P(S) + P(T)$ with values	B1√^	1	FT their $P(S \cap T)$ , not obtained from $P(S) \times P(T)$ , with value and statement.





 $193.\ 9709_m22_ms_52\ Q:\ 1$ 

Question				Ans	swer		Marks	Guidance
(a)	X	-2	-1	0	1	2	B1	Table with correct $X$ values and at least one probability $0 . Condone any additional X values if probability stated as 0. No repeated X values.$
	P(X)	$\frac{1}{16}$	$\frac{3}{16}$	$\frac{5}{16}$	$\frac{5}{16}$	$\frac{2}{16}$	B1	-
		0.0625	0.1875	0.3125	0.3125	0.125	Bı	2 further correct probabilities linked with correct outcomes, may not be in table
								No repeated $X$ values.  SC if less than 3 correct probabilities seen, award SCB1 Sum of <i>their</i> probabilities, $0 , of 4,5 or 6 X values = 1 (condone summing to 1\pm0.01 or better).$
							3	
(b)	$\left[\frac{1}{16} \times -2^2 + \frac{3}{16} \times -1^2 \left( +\frac{5}{16} \times 0^2 \right) + \frac{5}{16} \times 1^2 + \frac{2}{16} \times 2^2 - \left(\frac{1}{4}\right)^2\right]$ $\frac{1 \times 4 + 3 \times 1 + 5 \times 0 + 5 \times 1 + 2 \times 4}{16} - 0.25^2$						MI	Appropriate variance formula using $(E(X))^2$ value, accept unsimplified. FT <i>their</i> table with at least 3 different $X$ values even if probabilities not summing to $1$ , $0 . Condone 1 error providing all probabilities <1 and 0.25^2 used$
	$\left[=\frac{5}{4}-\right]$	$\frac{1}{16} = \left] \frac{19}{16},$	1.1875				A1	Condone 1.188 or 1.19 WWW
							2	40

 $194.\ 9709_m22_ms_52\ Q:\ 2$ 

Question	Answer	Marks	Guidance
(a)	$[P(>2) = 1 - P(0,1,2) =]$ $1 - ({}^{7}C_{0} \ 0.18^{0} \ 0.82^{7} + {}^{7}C_{1} \ 0.18^{1} \ 0.82^{6} + {}^{7}C_{2} \ 0.18^{2} \ 0.82^{5})$	M1	One term $^{7}C_{x} p^{x} (1-p)^{7-x}, 0$
	= 1 - (0.249285 + 0.383048 + 0.252251) = 1 - 0.88458	A1	Correct unsimplified expression or better Condone omission of brackets if recovered
	0.115	B1	WWW. $0.115 \le p < 0.1155$ not from wrong working
		3	
(b)	[P(at least 1 day of rain) = $1 - P(0) = 1 - (0.82)^7$ =] 0.7507	B1	AWRT 0.751 seen
	[P(exactly 2 periods) =] $0.7507^2 \times (1-0.7507) \times 3$	M1	FT their $1-p^7$ or their 0.7507 if identified, not 0.18, 0.82 Accept $\times$ 3C_r , $r=1,2$ or $\times$ 3P_1 for $\times$ 3 Condone $\times$ 2
	0.421	A1	Accept $0.421 \le p \le 0.4215$ SC B1 if $0/3$ scored for final answer only $0.421 \le p \le 0.4215$
	**	3	





 $195.\ 9709_m22_ms_52\ Q:\ 6$ 

Question	Answer	Marks	Guidance
(a)	[Probability of lemon = $\frac{3}{15} = \frac{1}{5}$ ]	В1	0.0524288 rounded to more than 3SF if final answer
	$\left[ \left( \frac{4}{5} \right)^6 \times \frac{1}{5} = \right] \frac{4096}{78125}, 0.0524$		
		1	
(b)	$\left(1-\frac{1}{5}\right)^6$	М1	or $\left(\frac{4}{5}\right)^6$ . FT their $\frac{1}{5}$ or correct. From final answer
			Condone $\left(\frac{4}{5}\right)^5 \text{ or } \left(\frac{1}{5}\right) \times \left(\frac{4}{5}\right)^5 + \left(\frac{4}{5}\right)^6$
	$\frac{4096}{15625}$ , 0.262	A1	0.262144 rounded to more than 3SF
	Alternative method for question 6(b)		
	[1 - P(1,2,3,4,5,[6]) =]	M1	From final answer
	$1 - \left(\frac{1}{5} + \frac{4}{5} \times \frac{1}{5} + \left(\frac{4}{5}\right)^2 \times \frac{1}{5} + \left(\frac{4}{5}\right)^3 \times \frac{1}{5} + \left(\frac{4}{5}\right)^4 \times \frac{1}{5} + \left(\frac{4}{5}\right)^5 \times \frac{1}{5}\right)$		Condone omission of $\left(\frac{4}{5}\right)^2 \times \frac{1}{5}$
	$\frac{4096}{15625}$ , 0.262	A1	0.262144 rounded to more than 3SF
		2	

		4							
Question	Answer	Marks	Guidance						
(c)	$\frac{10}{15} \times \frac{9}{14} \times \frac{8}{13}$	M1	$\frac{a}{15} \times \frac{a-1}{14} \times \frac{a-2}{13}$ , no additional terms						
	$\frac{24}{91}$ , 0·264	A1	0.263736 rounded to more than 3SF						
	Alternative method for question 6(c)								
	$\frac{3}{15} \times \frac{2}{14} \times \frac{1}{13} + 3 \times \frac{3}{15} \times \frac{2}{14} \times \frac{7}{13} + 3 \times \frac{3}{15} \times \frac{7}{14} \times \frac{6}{13} + \frac{7}{15} \times \frac{6}{14} \times \frac{5}{13}$	M1	[3Ls + 2Ls1S + 1L2Ss + 3Ss] Condone one numerator error. Condone no multiplications seen if tree diagram complete with probabilities on each branch, scenarios listed and attempt at evaluation						
	$\frac{24}{91}$ , 0·264	A1	0.263736 rounded to more than 3SF						
	Alternative method for question 6(c)								
	$1 - \left(\frac{5}{15} \times \frac{4}{14} \times \frac{3}{13} + 3 \times \frac{5}{15} \times \frac{4}{14} \times \frac{10}{13} + 3 \times \frac{5}{15} \times \frac{10}{14} \times \frac{9}{13}\right)$	M1	1 – P(3,2,1 oranges) Condone one numerator error.						
	$\frac{24}{91}$ , 0·264	A1	0.263736 rounded to more than 3SF						
	Alternative method for question 6(c)								
	$\frac{^{10}\text{C}_3}{^{15}\text{c}_3}$	М1							
	$\frac{24}{91}$ , 0·264	A1	0.263736 rounded to more than 3SF						
		2							





Question	Answer	Marks	Guidance
(d)	$\frac{7}{15} \times \frac{5}{14} \times \frac{3}{13} \times 3!$	M1	All probabilities of the form: $\frac{7}{a} \times \frac{5}{b} \times \frac{3}{c}$ , $13 \le a,b,c \le \underline{15}$
		M1	$\frac{e}{f} \times \frac{g}{h} \times \frac{i}{j} \times 3!$ e.f.g,h,i.j positive integers forming
			probabilities or 6 identical probability calculations or values added, no additional terms
	$\frac{3}{13}$ , 0·231	A1	0·230769 rounded (not truncated) to more than 3SF
	Alternative method for question 6(d)		
	$\frac{{}^{3}C_{1}^{5}C_{1}^{7}C_{1}}{{}^{15}C_{2}}$	M1	$\frac{{}^{3}C_{1}^{5}C_{1}^{7}C_{1}}{k}, k \text{ integer} > 1$
	,		Condone use of permutations
		M1	$\frac{{}^{3}C_{a}^{5}C_{b}^{7}C_{c}}{{}^{15}C_{3}}, 0 < a < 3, 0 < b < 5, 0 < c < 7,$
			Condone use of permutations
	$\frac{3}{13}$ , 0·231	A1	0.230769 rounded (not truncated) to more than 3SF
		3	20
Question	Answer	Marks	Guidance
(e)	$\frac{\frac{7}{15} \times \frac{6}{14} \times \frac{5}{13} + \frac{3}{15} \times \frac{7}{14} \times \frac{6}{13} \times 3}{their(c)} \left[ = \frac{14}{65} \div \frac{24}{91} \right]$	B1	$\frac{3}{15} \times \frac{7}{14} \times \frac{6}{13} \times 3 \text{ seen (SSL, SLS, LSS)}$ SC B1 $\frac{3}{65} \times 3$ , $\frac{126}{2730} \times 3 \text{ seen}$
		B1	$\frac{7}{15} \times \frac{6}{14} \times \frac{5}{13}$ seen in numerator (SSS)
			SCB1 $\frac{210}{2730}$ , $\frac{1}{13}$ seen in numerator
		M1	Fraction with <i>their</i> (c) or correct in denominator $\left(\frac{720}{2730}, \frac{24}{91}, 0.263736\right)$
	$=\frac{49}{60}$ , 0.817		Accept 0.816
	Alternative method for question 6(e)		
	$\frac{{}^{7}C_{2}^{3}C_{1}+{}^{7}C_{3}}{{}^{10}C_{3}}$	В1	$^{7}C_{2} \times ^{3}C_{1}$ seen (SSL, SLS, LSS) SCB1 21 × 3 seen or use of permutations
	•••		⁷ C ₃ seen in numerator (SSS) SCB1 35 seen in numerator or use of permutations
			Fraction with 10 C $_3$ or consistent with <i>their</i> numerator of $6(\mathbf{c})$ in denominator
	$=\frac{49}{60}$ , 0.817	A1	Accept 0.816
		4	





 $196.\ 9709_s22_ms_51\ Q:\ 4$ 

Question	Answer	Marks	Guidance
(a)	$a = P(1 \text{ head}) = 0.7 \times (0.5)^3 + 0.3 \times (0.5)^3 \times 3 = \frac{1}{5}$	B1	Clear statement of unevaluated correct calculation $=\frac{1}{5}$ . AG
	$b = 0.7 \times 0.5^{3} \times 3 + 0.3 \times 0.5^{3} \times 3 = \frac{3}{8}$	M1	Clear statement of unevaluated calculation for either $b$ or $c$
	$c = 0.7 \times 0.5^3 \times 3 + 0.3 \times 0.5^3 = \frac{3}{10}$	A1	For either $b$ or $c$ correct
	$\left[ orc = \frac{27}{40} - b \right]$	B1 FT	$their b + their c = \frac{27}{40}$
		4	
(b)	$\[ E(X) = \frac{3 \times 0 + 16 \times 1 + 30 \times 2 + 24 \times 3 + 7 \times 4}{80} = \] \frac{176}{80} \text{ or } 2.2$	B1 FT	Correct or accept unsimplified calculation using their values for $b$ and $c$ seen (sum of probabilities = 1)
		1	

Question	Answer	Marks	Guidance
(c)	$[P(0, 1, 2) = ]^{10}C_0 \ 0.2^0 \ 0.8^{10} \ + {}^{10}C_1 \ 0.2^1 \ 0.8^9 \ + {}^{10}C_2 \ 0.2^2 \ 0.8^8$	M1	One term ${}^{10}C_x \ p^x (1-p)^{10-x}$ , for $0 < x < 10, 0 < p < 1$
	0.107374 + 0.268435 + 0.301989	A1	Correct expression, accept unsimplified leading to final answer
	0.678	B1	$0.677$
	Alternative method for question 4(c)	6)	•
	$\frac{1 - \left[^{10}C_{10} \cdot 0.2^{10}0.8^{0} + ^{10}C_{9} \cdot 0.2^{9}0.8^{1} + ^{10}C_{8} \cdot 0.2^{8}0.8^{2} + ^{10}C_{7} \cdot 0.2^{7}0.8^{3} + ^{10}C_{6} \cdot 0.2^{6}0.8^{4} + ^{10}C_{5} \cdot 0.2^{9}0.8^{5} + ^{10}C_{4} \cdot 0.2^{4}0.8^{6} + ^{10}C_{3} \cdot 0.2^{3}0.8^{7}\right]}{}$	M1	One term ${}^{10}C_x \ p^x (1-p)^{10-x}$ , for $0 < x < 10, 0 < p < 1$
		A1	Correct expression, accept unsimplified
	0.678	B1	$0.677$
		4	
(d)	$0.8^6 \times 0.2 + 0.8^7 \times 0.2 = 0.0524288 + 0.041943$	M1	$p^{l} \times (1-p) + p^{m} \times (1-p), l = 6, 7$ $m = l + 1, 0$
	0.0944	A1	0.09437 <b>&lt;</b> <i>p</i> ≤ 0.0944
		2	

197. 9709_s22_ms_52 Q: 2

Question	Answer				Marks	Guidance	
(a)	x / 2 3	4	5	6		B1	Table with correct X values and at least one probability.  Condone any additional X values if probability stated as 0.
	$\begin{array}{c c} p & \frac{1}{36} & \frac{4}{36} \end{array}$	10 36	12 36	$\frac{9}{36}$		B1	3 correct probabilities linked with correct outcomes. Accept 3 sf decimals.
	0.02778 0.1111	0.2778	0.3333	0.25		В1	2 further correct probabilities linked with correct outcomes. Accept 3 sf decimals.
						3	<b>SC B1</b> for 5 probabilities $(0 \le p \le 1)$ that sum to 1 with less than 3 correct probabilities.





Question	Answer	Marks	Guidance				
(b)	If method FT from <i>their</i> incorrect (a), expressions for $E(X)$ and $Var(X)$ must be seen at the stage shown in <b>bold</b> (or less simplified) in the scheme with all probabilities $\leq 1$ .						
	$\left[ E(X) = \frac{1 \times 2 + 4 \times 3 + 10 \times 4 + 12 \times 5 + 9 \times 6}{36} = \right] \frac{2 + 12 + 40 + 60 + 54}{36}$	M1	Accept unsimplified expression. May be calculated in variance. FT <i>their</i> table with 4 or more probabilities summing to $0.999 \le \text{total} \le 1 \ (0 \le p \le 1)$ .				
		M1	Appropriate variance formula using their $(E(X))^2$ value. FT their table with 3 or more probabilities $(0 \le p \le 1)$ which need not sum to 1 and the calculation in <b>bold</b> (or less simplified) seen.				
	$E(X) = \frac{168}{36}, \frac{14}{3}, 4.67$ $Var(X) = \frac{10}{9}, 1\frac{1}{9}, 1.11, \frac{1440}{1296}$	A1	Answers for E(X) and $Var(X)$ must be identified. E(X) may be identified by correct use in Variance. Condone E, V, $\mu$ , $\sigma^2$ etc. If M0 earned SC B1 for identified correct final answers.				
		3	0-				

198. 9709_s22_ms_53 Q: 3

Question			Ans	swer	Marks	•	Guidance		
(a)	$k = \frac{1}{18} (4k + k + 4k + 9k = 18k = 1)$							SOI	
	х	-2	1	2	3		M1		ith correct x values and at least one lity accurate using their k.
	P(X=x)	$\frac{4}{18}$	1 18	$\frac{4}{18}$	$\frac{9}{18}$	4	O.		need not be in order, lines may not be may be vertical, $x$ and $P(X=x)$ may be
				•				Condon stated as	e any additional X values if probability s 0.
							A1	Remain	ing probabilities correct.
							3		

Question	Answer	Marks	Guidance
(b)	$\begin{bmatrix} E(X) = \frac{4 \times -2 + 1 \times 1 + 4 \times 2 + 9 \times 3}{18} = \\ \frac{-8 + 1 + 8 + 27}{18} \end{bmatrix}$	M1	-8k + k + 8k + 27k May be implied by use in Variance. Accept unsimplified expression. FT <i>their</i> table if probabilities sum to 1 or 0.999. SC B1 $28k$ .
	$\left[\operatorname{Var}(X) = \frac{4 \times (-2)^2 + 1 \times 1^2 + 4 \times 2^2 + 9 \times 3^2}{18} - \left(their  \mathrm{E}(X)\right)^2 = \right]$ $= \frac{16 + 1 + 16 + 81}{18} - \left(their  \frac{28}{18}\right)^2$	M1	$\begin{aligned} &16k+k+16k+81k-(their\ \text{mean})^2\\ &\text{FT } their\ \text{table even if probabilities not summing to}\\ &1.\\ &\text{Note: If table is correct, } \frac{114}{18}-\left(their\ \text{E}\left(X\right)\right)^2\ \text{M1}.\\ &\text{SC B1 } 114k-(their\ \text{mean})^2. \end{aligned}$
	$E(X) = \frac{14}{9}, 1\frac{5}{9}, 1.56, Var(X) = \frac{317}{81}, 3\frac{74}{81}, 3.91$	A1	Answers for E(X) and Var(X) must be identified. $3.91 \le \text{Var}(X) \le 3.914$
		3	

 $199.\ 9709_s22_ms_53\ Q\hbox{:}\ 4$ 

Question	Answer	Marks	Guidance
(a)	$\left[ \left( \frac{5}{6} \right)^7 \times \frac{1}{6} = \right] 0.0465, \frac{78125}{1679616}$	B1	$0.0465 \leqslant p < 0.04652$
		1	





Question	Answer	Marks	Guidance
(b)	$P(X < 6) = 1 - \left(\frac{5}{6}\right)^5 \text{ or } \frac{1}{6} + \left(\frac{5}{6}\right)\left(\frac{1}{6}\right) + \left(\frac{5}{6}\right)^2 \left(\frac{1}{6}\right) + \left(\frac{5}{6}\right)^3 \left(\frac{1}{6}\right) + \left(\frac{5}{6}\right)^4 \left(\frac{1}{6}\right)$	M1	$1 - p^n$ , $0 , n = 4, 5, 6 or sum of 4, 5 or 6 terms p \times (1 - p)^n for n = 0, 1, 2, 3, 4(5).$
	0.598, <del>4651</del> <del>7776</del>	A1	
		2	
(c)	[Probability of total less than 4 is] $\frac{3}{36}$ or $\frac{1}{12}$	B1	SOI
	$ \begin{bmatrix} [1 - P(0, 1, 2)] \\ = 1 - ({}^{10}C_0 \left(\frac{1}{12}\right)^0 \left(\frac{11}{12}\right)^{10} + {}^{10}C_1 \left(\frac{1}{12}\right)^1 \left(\frac{11}{12}\right)^9 + {}^{10}C_2 \left(\frac{1}{12}\right)^2 \left(\frac{11}{12}\right)^8) $	M1	One term ${}^{10}C_x \ p^x (1-p)^{10-x}$ , for $0 \le x \le 10$ , $0 \le p \le 1$ .
	1 - (0.418904 + 0.380822 + 0.155791)	A1 FT	Correct expression. Accept unsimplified.
	0.0445	A1	$0.04448 \leqslant p \leqslant 0.0445$
		4	

200. 9709_m21_ms_52 Q: 1

Question	Answer	Marks	Guidance
(a)	$\left[ \left( \frac{4}{5} \right)^7 \frac{1}{5} = \right] \frac{16384}{390625} \text{ or } 0.0419[43]$	B1	Evaluated, final answer.
(b)	$1 - \left(\frac{4}{5}\right)^5 \text{ or } \frac{1}{5} + \frac{4}{5} \times \frac{1}{5} \left(\frac{4}{5}\right)^2 \times \frac{1}{5} + \left(\frac{4}{5}\right)^3 \times \frac{1}{5} + \left(\frac{4}{5}\right)^4 \times \frac{1}{5}$	M1	$1 - p^{n} n = 5.6$ or $p + pq + pq^{2} + pq^{3} + pq^{4} (+ pq^{5})$ $0  Sum of a geometric series may be used.$
	2101 3125 or 0-672[32]	A1	Final answer.
	Alternative method for question 1(b)		
	[P(at least 1 three scored in 5 throws) =] $\left(\frac{1}{5}\right)^5 + {}^5C_4 \left(\frac{1}{5}\right)^4 \left(\frac{4}{5}\right) + {}^5C_3 \left(\frac{1}{5}\right)^3 \left(\frac{4}{5}\right)^2 + {}^5C_2 \left(\frac{1}{5}\right)^2 \left(\frac{4}{5}\right)^3 + {}^5C_4 \left(\frac{1}{5}\right) \left(\frac{4}{5}\right)^4$	M1	$(p)^5 + {}^5C_4(p)^4(q) + {}^5C_3(p)^3(q)^2 + {}^5C_2(p)^2(q)^3 + {}^5C_1(p)(q)^4$ or $(p)^6 + {}^6C_5(p)^5(q) + {}^6C_4(p)^4(q)^2 + {}^6C_3(p)^3(q)^3$
	100		$+^6C_2(p)^2(q)^4+^6C_1(p)(q)^5$ , $0At least first, last and one intermediate term is required to show pattern of terms if not all terms stated.$
	2101 or 0·672[32]	A1	Final answer.
		2	





 $201.\ 9709_m21_ms_52\ Q:\ 4$ 

Question	Answer	Marks	Guidance
(a)	x         1         2         3         4           prob         4k         6k         6k         4k	B1	Table with $\times$ values and one correct probability expressed in terms of $k$ .  Condone any additional $\times$ values if probability stated as 0.
		B1	Remaining 3 probabilities correct expressed in terms of $k-$ condone if the first correct probability is not in table.
		2	
(b)	$[4k+6k+6k+4k=1] k = \frac{1}{20} (= 0.05)$	B1	Correct value for k SOI. May be calculated in 4(a). SC B1 If denominator 20k used throughout.
	$E(X) = 1 \times \frac{4}{20} + 2 \times \frac{6}{20} + 3 \times \frac{6}{20} + 4 \times \frac{4}{20} = \frac{4}{20} + \frac{12}{20} + \frac{18}{20} + \frac{16}{20}$ (= 2.5)	M1	Accept unsimplified expression. Condone $4k + 12k + 18k + 16k$ . May be implied by use in Variance expression. <b>Special ruling:</b> Allow use of denominator $20k$ .
	$Var(X) = 1^{2} \times \frac{4}{20} + 2^{2} \times \frac{6}{20} + 3^{2} \times \frac{6}{20} + 4^{2} \times \frac{4}{20} - \left(their 2\frac{1}{2}\right)^{2}$ $= (4 + 24 + 54 + 64) \times their 0.05 - \left(their 2.5\right)^{2}$ Or $(1 - 2.5)^{2} \times \frac{4}{20} + (2 - 2.5)^{2} \times \frac{6}{20} + (3 - 2.5)^{2} \times \frac{6}{20} + (4 - 2.5)^{2} \times \frac{4}{20}$	M1	Appropriate variance formula with <i>their</i> numerical probabilities using <i>their</i> $(E(X))^2$ , accept unsimplified, with <i>their k</i> substituted.  Special ruling: If denominator $20k$ used throughout, accept appropriate variance formula in terms of $k$ .
	1.05	A1	AG, NFWW.
		4	

 $202.\ 9709_s21_ms_51\ Q:\ 7$ 

Question	Answer	Marks	Guidance
(a)	$P(X=3) = \frac{4}{7} \times \frac{3}{6} \times \frac{3}{5}$	MI	$\frac{m}{7} \times \frac{n}{6} \times \frac{o}{5}$ used throughout. condone use of $\frac{1}{2}$
	$\frac{6}{35}$	A1	AG. The fractions must be identified, e.g. P(NC, NC, C), may be seen in a tree diagram.
	~0	2	





Question	Answer	Marks	Guidance
(b)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1	Table with $x$ values and at least one probability Condone any additional $x$ values if probability stated as 0.
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1	One correct probability other than $X = 3$ linked to the correct outcome
		B1	Two further correct probabilities other than $X = 3$ seen linked to the correct outcome
		B1FT	All probabilities correct, or at least 4 probabilities summing to 1
		4	
(c)	$[E(X) = 1 \times \frac{15}{35} + 2 \times \frac{10}{35} + 3 \times \frac{6}{35} + 4 \times \frac{3}{35} + 5 \times \frac{1}{35}]$ $E(X) = \frac{15 + 20 + 18 + 12 + 5}{35} \left[ = \frac{70}{35} = 2 \right]$	M1	At least 4 correct terms FT <i>their</i> values in (a) with probabilities summing to 1 May be implied by use in Variance, accept unsimplified expression.
	$\operatorname{Var}(X) = \left[ \frac{1^2 \times 15 + 2^2 \times 10 + 3^2 \times 6 + 4^2 \times 3 + 5^2 \times 1}{35} - 2^2 = \right]$ $\frac{15 + 40 + 54 + 48 + 25}{35} - 2^2$	M1	Appropriate variance formula using <i>their</i> $(E(X))^2$ . FT <i>their</i> table accept probabilities not summing to 1.
	$\left[ = \frac{182}{35} - 4 \right] = \frac{6}{5}$	A1	<b>N.B.</b> If method FT for M marks from <i>their</i> incorrect (b), expressions for $E(X)$ and $Var(X)$ must be seen unsimplified with all probabilities $<1$
		3	

203. 9709_s21_ms_52 Q: 1

Question	Answer	Marks	Guidance
(a)	6	B1	www
		1	
(b)	$\left(\frac{5}{6}\right)^{3} \frac{1}{6} + \left(\frac{5}{6}\right)^{4} \frac{1}{6} + \left(\frac{5}{6}\right)^{5} \frac{1}{6} + \left(\frac{5}{6}\right)^{6} \frac{1}{6}$	M1	$p^{3}(1-p) + p^{4}(1-p) + p^{5}(1-p) + p^{6}(1-p), 0$
	0.300 (0.2996)	A1	At least 3s.f. Award at most accurate value.
	Alternative method for Question 1(b)		
	$\left(\frac{5}{6}\right)^3 - \left(\frac{5}{6}\right)^7$	M1	$p^3 - p^7, 0$
	0.300 (0.2996)	A1	At least 3s.f. Award at most accurate value.
	44	2	
(c)	$1 - \left(\frac{5}{6}\right)^9$	M1	$1 - p^n$ , $0 , n = 9, 10$
	0.806	A1	
	Alternative method for Question 1(c)		
	$\boxed{\frac{1}{6} + \frac{1}{6} \left(\frac{5}{6}\right) + \frac{1}{6} \left(\frac{5}{6}\right)^2 + \dots + \frac{1}{6} \left(\frac{5}{6}\right)^8}$	M1	$\begin{vmatrix} p+p(1-p)+p(1-p)^2+p(1-p)^3+p(1-p)^4+p(1-p)^5+p(1-p)^6+p(1-p)^7+p(1-p)^8(+p(1-p)^9),\ 0< p<1 \\ \text{As per answer for minimum terms shown} \end{vmatrix}$
	0.806	A1	
		2	





 $204.\ 9709_s21_ms_52\ Q\hbox{:}\ 4$ 

Question	Answer						Marks	Guidance
(a)	X	-1	0	1	2	3	B1	Table with correct X values and at least one probability Condone any additional X values if probability stated as 0.
	P(X)	$\frac{1}{9}$	$\frac{2}{9}$	$\frac{1}{9}$	$\frac{3}{9}$	$\frac{2}{9}$	B1	2 correct probabilities linked with correct outcomes, may not be in table.
							B1	3 further correct probabilities linked with correct outcomes, may not be in table.
								SC if less than 2 correct probabilities seen, award SCB1 for sum of <i>their</i> 4 or 5 probabilities in table = 1
							3	
(b)	$ \left[ E(X) = \frac{-1 \times 1 + (0 \times 2) + 1 \times 1 + 2 \times 3 + 3 \times 2}{9} = \right] \\ \frac{-1 + 1 + 6 + 6}{9} $						M1	May be implied by use in variance, accept unsimplified expression.  FT <i>their</i> table if <i>their</i> 3 or more probabilities sum to 1 or 0.999
	$\begin{aligned} & [\text{Var}(X) = ] \\ & \left[ \frac{-1^2 \times 1 + \left(0^2 \times 2\right) + 1^2 \times 1 + 2^2 \times 3 + 3^2 \times 2}{9} - \left(\text{their } E(X)\right)^2 \right] \\ & \frac{1 + 0 + 1 + 12 + 18}{9} - \left(\text{their } E(X)\right)^2 \end{aligned}$					$(\xi)^2$	M1	Appropriate variance formula using <i>their</i> $(E(X))^2$ value. FT <i>their</i> table even if <i>their</i> 3 or more probabilities not summing to 1.
	$E(X) = \frac{4}{3}$ or 1.33 and $Var(X) = \frac{16}{9}$ or 1.78						A1	Answers for E(X) and Var(X) must be identified
							3	<b>N.B.</b> If method FT for M marks from <i>their</i> incorrect <b>(b)</b> , expressions for $E(X)$ and $Var(X)$ must be seen unsimplified with all probabilities $<1$

 $205.\ 9709_s21_ms_53\ Q:\ 2$ 

Question	Answer	Marks	Guidance
2	p+p+0.1+q+q=1	B1	Sum of probabilities = 1
	0.1 + 2q = 3(2p)	B1	Use given information
	Attempt to solve two correct equations in $p$ and $q$	M1	<b>Either</b> use of Substitution method to form a single equation in either $p$ or $q$ and finding values for both unknowns. <b>Or</b> use of Elimination method by writing both equations in same form (usually $ap+bq=c$ ) and $+$ or $-$ to find an equation in one unknown and finding values for both unknowns.
	$p = \frac{1}{8}$ or 0.125 and $q = \frac{13}{40}$ or 0.325	A1	CAO, both WWW
	***	4	





 $206.\ 9709_s21_ms_53\ Q\hbox{:}\ 4$ 

Question	Answer	Marks	Guidance
(a)	[Possible cases: 1 1 2, 1 2 1, 2 1 1] Probability = $\left(\frac{1}{6}\right)^3 \times 3$	M1	$\left(\frac{1}{6}\right)^3 \times k$ , where $k$ is an integer.
		M1	Multiply a probability by 3, not +, – or ÷
	$\frac{1}{72}$	A1	Accept $\frac{3}{216}$ or 0.0138 or 0.0139
		3	
(b)	$P(18) = \left(\frac{1}{6}\right)^3 \left[ = \frac{1}{216} \right]$	B1	
	P(18 on 5th throw) = $\left(\frac{215}{216}\right)^4 \times \frac{1}{216}$	M1	$(1-p)^4p$ , $0 < their p < 1$
	0.00454	A1	
		3	

207.  $9709_w21_ms_51$  Q: 1

Question	Answer	Marks	Guidance
(a)	$\left(\frac{3}{4}\right)^6 \frac{1}{4}$	M1	$(1-p)^6 p, 0$
	$0.0445, \frac{729}{16384}$	A1	
		2	
(b)	$\left(\frac{3}{4}\right)^9$	M1	$\left(\frac{3}{4}\right)^n \text{ or } p^n, \ 0$
	$0.0751, \frac{19683}{262144}$	A1	
		2	





 $208.\ 9709_w21_ms_51\ Q:\ 4$ 

Question	Answer	Marks	Guidance
(a)	x         -1         0         1         2         3           p         1         0         2         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0	В1	0 1 2 2
	$ P $ $\frac{1}{12} = 0.0833$ $\frac{2}{12} = 0.167$ $\frac{4}{12} = 0.333$ $\frac{3}{12} = 0.25$ $\frac{2}{12} = 0.167$		-1 -1 0 1 1
			0 0 1 2 2
			1 1 2 3 3
			Table with $x$ values and at least one probability substituted, $0 . Condone any additional x values if probability stated as 0.$
		B1	2 correct identified probabilities.
		B1	All probabilities correct (accept to 3sf).
			SC if less than 2 correct probabilities: SC B1 4 or 5 probabilities summing to one.
		3	
(b)	$E(X) = -\frac{1}{12} + \frac{4}{12} + \frac{6}{12} + \frac{6}{12} \left[ = \frac{15}{12} \right]$	M1	May be implied by use in Variance, accept unsimplified expression. Probabilities must sum to $1\pm0.001$ .
	Var $(X) = \frac{1}{12} + 0 + \frac{4}{12} + \frac{12}{12} + \frac{18}{12} - \left(\frac{15}{12}\right)^2$	M1	Appropriate variance formula using their $(E(X))^2$ . FT accept probabilities not summing to 1.  Condone $\frac{35}{12} - \left(\frac{15}{12}\right)^2 or \frac{35}{12} - \frac{25}{9}$ from correct table.
	$\left[\frac{35}{12} - \frac{25}{16} = \right] \frac{65}{48}, 1.35$	A1	
		3	

 $209.\ 9709_w21_ms_52\ Q:\ 3$ 

Question	Answer	Marks	Guidance
(a)	For one yellow: YGG + GYG +GGY $\frac{5}{9} \times \frac{4}{8} \times \frac{3}{7} \times 3$	M1	$\frac{a}{9} \times \frac{b}{8} \times \frac{c}{7}$ , $0 < a, b, c$ integers $\leq 5$ , for one arrangement.
	9 8 7		Their three-factor probability $\times$ 3, 3C_1 , 3C_2 or $^3P_{1}$ (or repeated adding) no additional terms.
	$\left[\frac{180}{504} = \right] \frac{5}{14}$	A1	AG. Convincingly shown, including identifying possible scenarios, may be on tree diagram WWW.
		3	
	Alternative method for question 3(a)		
	$\frac{{}^{5}C_{1} \overset{4}{\sim} {}^{4}C_{2}}{{}^{9}C_{3}}$	M1	$\frac{{}^{5}C_{1}^{4}C_{2}}{{}^{9}C_{r}}, r=2, 3, 4$
		M1	$\frac{{}^{5}C_{s} \times {}^{4}C_{t}}{{}^{9}C_{3}}, s+t=3$
	$\left[\frac{30}{84}\right] = \frac{5}{14}$	A1	AG. Convincingly shown, WWW.
		3	





Question		Answe	ver		Marks	Guidance
(b)	X 0 P(X) 24		2 3 240 <u>60</u>		B1	Table with correct $X$ values and one correct probability inserted appropriately. Condone any additional $X$ values if probability stated as 0.
	504	504 5	504 504		B1	Second identified correct probability, may not be in table.
	$\begin{bmatrix} = \frac{1}{21}, \\ 0.0476 \end{bmatrix}$	$=\frac{1}{14}$ , $=\frac{1}{14}$	$\begin{bmatrix} \frac{10}{21}, \\ \frac{1}{476} \end{bmatrix} \begin{bmatrix} \frac{3}{42}, \\ 0.119 \end{bmatrix}$	42'	В1	All probabilities identified and correct .  SC if less than 2 correct probabilities or X value(s) omitted: SC B1 3 or 4 probabilities summing to one.
					3	
(c)	$[E(X) =] \frac{840}{504}, \frac{5}{3}, 1.67$	,			B1	OE Must be evaluated. SC B1 FT correct unsimplified expression from incorrect <b>3(b)</b> using at least 3 probabilities, $0 .$
					1	

 $210.\ 9709_w21_ms_52\ Q\hbox{:}\ 5$ 

Question	Answer	Marks	Guidance
(a)	$[P(0, 1, 2) =] {}^{10}C_0 0.16^0 0.84^{10} + {}^{10}C_1 0.16^1 0.84^9 + {}^{10}C_2 0.16^2 0.84^8$	M1	One term: ${}^{10}C_x p^x (1-p)^{10-x}$ for $0 < x < 10$ , any $p$ .
	[= 0.17490 + 0.333145 + 0.28555]	A1	Correct unsimplified expression, or better.
	0.794	A1	$0.7935 , mark at most accurate. If M0 scored, SC B1 for final answer 0.794.$
		3	
(b)	$(0.84)^7 0.16$	M1	$(1-p)^{3}p, 0$
	0.0472	A1	0.0472144 to at least 3sf.
		2	

Question	Answer	No.	Marks	Guidance
(c)	$4 \times 0.0472 \times (1 - 0.0472)^3$		M1	$4 \times q(1-q)^3$ , $q = their$ (b) or correct.
	0.163		A1	$0.163 \le p \le 0.1634$ , mark at most accurate from <i>their</i> probability to at least 3sf.
	40		2	





### $211.\ 9709_w21_ms_53\ Q:\ 6$

Question	Answer	Marks	Guidance
(a)	p+q+0.65=1	B1	Sum of probabilities = 1.
	p + 2q + 0.15 = 0.55	B1	Use given information.
	Solve 2 linear equations	M1	Either a single expression with one variable eliminated formed or two expressions with both variables on the same side seen with at least one variable value stated.
	$p = 0.3, \frac{3}{10},  q = 0.05, \frac{1}{20}$	A1	CAO, both WWW If M0 with correct answers SC B1.
		4	
(b)	$Var(X) = their 0.3 + 4 \times their 0.05 + 9 \times 0.05 - 0.55^{2}$	M1	Appropriate variance formula including $(E(X))^2$ , accept unsimplified.
	$0.6475 \left[ \frac{259}{400} \right]$	A1	CAO (must be exact).
		2	0.
(c)	$1 - P(0, 1, 2) = 1 - ({}^{12}C_0 \ 0.3^0 \ 0.7^{12} + {}^{12}C_1 \ 0.3^1 \ 0.7^{11} + {}^{12}C_2 \ 0.3^2 \ 0.7^{10})$	M1	One correct term: $^{12}C_x p^x (1-p)^{12-x}$ for $0 < x < 12$ , $0 .$
	1 - (0.01384 + 0.07118 + 0.16779)	A1FT	Correct unsimplified expression, or better in final answer. Unsimplified expression must be seen to <b>FT</b> <i>their p</i> from <b>6(a)</b> or correct.
	0.747	A1	~~
		3	VO) Y
(d)	$(0.95)^8 \times 0.05 = 0.0332 \text{ or } 0.95^8 - 0.95^9 = 0.0332$	B1	Evaluated.
		1	

### $212.\ 9709_m20_ms_52\ Q:\ 2$

Question	Answer	Marks	Guidance
(a)	$\left(\frac{1}{3}\right)\left(\frac{2}{3}\right)^2 + \left(\frac{1}{3}\right)\left(\frac{2}{3}\right)^3 + \left(\frac{1}{3}\right)\left(\frac{2}{3}\right)^4$	M1	One correct term with $0$
	$=\frac{4}{27} + \frac{8}{81} + \frac{16}{243} \left( = \frac{2432}{7776} \right)$	A1	Correct expression, accept unsimplified
	$=\frac{76}{243} \text{ or } 0.313$	A1	
		3	





Question	Answer	Marks	Guidance
(b)	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	В1	Probability distribution table with correct values of $x$ , no additional values unless with probability of 0 stated, at least one non-zero probability included
	$P(0) = \left(\frac{2}{3}\right)^3$	B1	1 correct probability seen (may not be in table) or 3 or 4 non-zero probabilities summing to 1
	$P(1) = \left(\frac{1}{3}\right) \left(\frac{2}{3}\right)^2 \times 3$	B1	All probabilities correct
	$P(2) = \left(\frac{2}{3}\right) \left(\frac{1}{3}\right)^2 \times 3$		
	$P(3) = \left(\frac{1}{3}\right)^3$		
		3	
(c)	$E(X) = \left[0 \times \frac{8}{27}\right] + 1 \times \frac{12}{27} + 2 \times \frac{6}{27} + 3 \times \frac{1}{27}$	M1	Correct method from <i>their</i> probability distribution table with at least 3 terms, $0 \le their P(x) \le 1$ , accept unsimplified
	$= \left[\frac{0}{27}\right] + \frac{12}{27} + \frac{12}{27} + \frac{3}{27}$		20
	= 1	A1	
		2	

 $213.\ 9709_s20_ms_51\ Q: 1$ 

Question	Answer	Marks
(a)	Prob of 4 (from 1,3, 3,1 or 2,2) = $\frac{3}{36} = \frac{1}{12}$ AG	B1
		1
(b)	Mean = $\frac{1}{\frac{1}{12}}$ = 12	В1
		1
(c)	$\left(\frac{11}{12}\right)^5 \times \frac{1}{12} = 0.0539 \text{ or } \frac{161051}{2985984}$	B1
		1
(d)	$1-\left(\frac{11}{12}\right)^7$	M1
	$0.456 \text{ or } \frac{16344637}{35831808}$	A1
		2





 $214.\ 9709_s20_ms_51\ Q:\ 3$ 

Question					Answer		Marks		
(a)	x	0	1	2	3		B1		
	Probability	<u>1</u> 56	15 56	30 56	10 56				
	(B1 for probability distribution table with correct outcome values)								
	$P(0) = \frac{3}{8} \times \frac{2}{7} \times P(1) = \frac{5}{8} \times \frac{3}{7} \times P(2) = \frac{5}{8} \times \frac{4}{7} \times P(3) = \frac{5}{8} \times \frac{4}{7} \times (\mathbf{M1} \text{ for denor})$	$\frac{2}{6} \times 3 = \frac{15}{56}$ $\frac{3}{6} \times 3 = \frac{30}{56}$ $\frac{3}{6} = \frac{10}{56}$	)				M1		
	Any one proba	ability correct (	(with correct o	utcome)		.0.	A1		
	All probabiliti	es correct					A1		
							4		
(b)	1-P(8, 9, 10)	$=1-\left[{}^{10}\mathrm{C_{8}}\mathrm{0.6}\right]$	$64^{8}0.36^{2} + {}^{10}C$	9 0.64 ⁹ 0.36 ¹ +	$0.64^{10}$		M1		
	1-(0.164156	+ 0.064852 + 0	0.11529)				M1		
	0.759					10,	A1		
							3		

215. 9709_s20_ms_52 Q: 5

Question	Answer					Marks
(a)	1	1	2	2	3	M1
	1 1	1	2	2	3	
	2 2	2	2	2	3	
	3 3	3	3	3	3	
	$\frac{7}{15}$ AG			(		A1
			3	7		2
(b)	x Probability	1 2 15	$\frac{6}{15}$		3 7 15	В1
	P(1) or P(2) co	rrect				B1
	3 rd probability	correct, FT	sum to 1			B1
						3





Question	Answer	Marks
(c)	$E(X) = \frac{2+12+21}{15} = \frac{35}{15} = \frac{7}{3}$	B1
	$Var(X) = \frac{1^2 \times 2 + 2^2 \times 6 + 3^2 \times 7}{15} - \left(\frac{7}{3}\right)^2$	M1
	$\frac{22}{45}(0.489)$	A1
		3

 $216.\ 9709_s20_ms_53\ Q:\ 2$ 

Question	Answer						
(a)	$0.22^3 = 0.0106$	В1					
		1					
(b)	$P(2, 3, 4) = {}^{16}C_2 \ 0.22^2 0.78^{14} + {}^{16}C_3 0.22^3 0.78^{13} + {}^{16}C_4 0.22^4 0.78^{12}$	M1					
	0.179205 + 0.235877 + 0.216221	A1					
	0.631	A1					
		3					

 $217.\ 9709_s20_ms_53\ Q:\ 4$ 

						1
Question					Answer	Marks
(a)	-1	0	0	1		
	0	1	1	2		
	2	3	3	4		
	x		-1	0	1 2 3 4	
	Probab	oility	$\frac{1}{12}$	$\frac{3}{12}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	Probabi	lity distı	ribution t	able with	correct scores with at least one probability	В1
	At least	4 proba	bilities co	orrect		B1
	All prob	abilities	s correct			B1
	+4	•				3
(b)	E(X) =	-1+0+	$\frac{3+4+6}{12}$	$\frac{+4}{12} = \frac{16}{12}$	$=\frac{4}{3}$	B1
	Var(X)	= 1+0+	12	$\frac{8+16}{}$ $-$	$\left(\frac{4}{3}\right)^2$	M1
	37 18 (= 2	.06)				A1
						3





 $218.\ 9709_w20_ms_51\ Q:\ 3$ 

(a)	$P(X > 6) = 0.75^6$	M1	$p^{n}, n = 6, 7  0$
	$0.178, \frac{729}{4096}$	A1	0·17797
		2	

Question	Answer	Marks	Guidance
(b)	$1 - P(0, 1, 2) = 1 - (0.75^{10} + {}^{10}C_1 \ 0.25^1 \ 0.75^9 + {}^{10}C_2 \ 0.25^2 \ 0.75^8)$	M1	Binomial term of form ${}^{10}\text{C}_{\text{x}} \ p^x \left(1-p\right)^{10-x}, \ 0  any p, x \neq 0, 10$
	1 - (0.0563135 + 0.1877117 + 0.2815676)	A1	Correct unsimplified expression
	0.474	A1	$0.474 \leqslant p \leqslant 0.4744$
		3	

219. 9709_w20_ms_51 Q: 4

(a)	y	1	2	3	4		B1	1 2 3 4
	prob	$\frac{7}{16}$	5 16	$\frac{3}{16}$	$\frac{1}{16}$			1 1 2 3
								3 2 1 3 1
								4 3 2 1 4
						- 4	~	Probability distribution table with correct scores with at least one probability, allow extra score values if probability of zero stated'
							B1	One probability (linked with correct score) correct
							B1	2 more probs (linked with correct scores) correct
							B1 FT	4 th prob correct, FT sum of 3 or 4 terms = 1
					4		4	

Question	Answer	Marks	Guidance
(b)	$P(2 \text{even}) = \frac{\frac{5}{16}}{\frac{6}{16}}$	M1	$\frac{their P(2)}{their P(2) + their P(4)}$ seen or correct outcome space.
	$\frac{5}{6}$ or 0.833	A1	
		2	





 $220.\ 9709_w20_ms_52\ Q:\ 1$ 

Question	Answer	Marks	Guidance
	$\begin{vmatrix} 1 - \left(\frac{5}{6}\right)^5 \\ \text{or } \frac{1}{6} + \frac{5}{6} \times \frac{1}{6} + \left(\frac{5}{6}\right)^2 \times \frac{1}{6} + \left(\frac{5}{6}\right)^3 \times \frac{1}{6} + \left(\frac{5}{6}\right)^4 \times \frac{1}{6} \end{vmatrix}$	M1	$1 - p^{n} n = 5.6$ or $p + pq + pq^{2} + pq^{3} + pq^{4} (+ pq^{5})$ $0$
	0·598, 4651 7776	A1	
		2	
(b)	$ (1 - P(0, 1, 2)) $ $ 1 - \left( \left( \frac{5}{6} \right)^{10} + {}^{10}C_1 \left( \frac{1}{6} \right) \left( \frac{5}{6} \right)^9 + {}^{10}C_2 \left( \frac{1}{6} \right)^2 \left( \frac{5}{6} \right)^8 \right) $	M1	$^{10}C_x p^x (1-p)^{10-x}, 0$
	1 - (0·1615056 + 0·3230111 + 0·290710)	A1	Correct expression, accept unsimplified, condone omission of final bracket
	0-225	A1	0·2247 < p ≤ 0·225, WWW
		3	

 $221.\ 9709_w20_ms_52\ Q:\ 2$ 

Question	Answer	Marks	Guidance
(a)	$P(1 \text{ red}) = \frac{5}{8} \times \frac{3}{7} \times \frac{2}{6} \times 3$	М1	$\frac{a}{8} \times \frac{b}{7} \times \frac{c}{6} \times k \text{ or } \frac{5}{d} \times \frac{3}{e} \times \frac{2}{f} \times 3, 1 \le a, b, c \le 5, d, e, f \le 8, a, b, c,$ $d, e, f, k \text{ all integers.} 1 < k \le 3,$
	<u>15</u> <u>56</u>	A1	AG, WWW
	Alternative method for question 2(a)	O.	
	$\frac{{}^{5}C_{1} \times {}^{3}C_{2}}{{}^{8}C_{3}}$	М1	$\begin{bmatrix} \frac{{}^{a}C_{1}^{b}C_{2}}{{}^{8}C_{3}} & \text{or } \frac{{}^{5}C_{d}^{3}C_{e}}{{}^{8}C_{3}} & \text{or} \\ \\ \frac{{}^{5}C_{d}^{3}C_{e}(or\ {}^{a}C_{1}^{b}C_{2})}{{}^{5}C_{3}^{3}C_{0}+{}^{5}C_{2}^{3}C_{1}+{}^{5}C_{1}^{3}C_{2}+{}^{5}C_{0}^{3}C_{3}}, \end{bmatrix}$
	-00		$C_d \wedge C_e(G \cap C_1 \wedge C_2)$ ${}^5C_3 \times {}^3C_0 + {}^5C_2 \times {}^3C_1 + {}^5C_1 \times {}^3C_2 + {}^5C_0 \times {}^3C_3$ $a + b = 8, d + e = 3$
	15 56	A1	AG, WWW, $\frac{15}{56}$ must be seen
		2	
(b)	x         0         1         2         3           Prob.         1         15         30         15         10         5	B1	Probability distribution table with correct outcomes with at least one probability less than 1, allow extra outcome values if probability of zero stated.
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	B1	2 of P(0), P(2) and P(3) correct
	0.0179 0.268 0.536 0.179	B1 FT	$4^{th}$ probability correct or FT sum of 3 or more probabilities = 1, with P(1) correct
		3	

Question	Answer	Marks	Guidance
(c)	$Var(X) = \frac{(0^2 \times 1) + 1^2 \times 15 + 2^2 \times 30 + 3^2 \times 10}{56} - \left(\frac{15}{8}\right)^2$ $= \frac{15}{56} + \frac{120}{56} + \frac{90}{56} - \left(\frac{15}{8}\right)^2$	M1	Substitute <i>their</i> attempts at scores in correct variance formula, must have '— mean ² ' (FT if mean calculated) (condone probabilities not summing to 1 for this mark)
	$\frac{225}{448}$ , 0·502	A1	
		2	





 $222.\ 9709_w20_ms_53\ Q:\ 2$ 

Question	Answer	Marks	Guidance
(a)	$\left(\frac{5}{6}\right)^8$	M1	$p^8$ , 0 < $p$ < 1, no $x$ , + or -
	0.233	A1	
		2	
(b)	36	B1	
		1	
(c)	$P(X=10) + P(X=11) = \left(\frac{35}{36}\right)^9 \frac{1}{36} + \left(\frac{35}{36}\right)^{10} \frac{1}{36}$	М1	OE, unsimplified expression in form $p^9q+p^{10}q$ , $p+q=1$ , no $ imes$
	0.0425	A1	
		2	

 $223.\ 9709_w20_ms_53\ Q:\ 6$ 

Question	Answer	Marks	Guidance
(a)	Scenarios:	M1	One 3 factor probability with 3, 3, 5 as denominators
	HHT: $\frac{2}{3} \times \frac{2}{3} \times \frac{1}{3} = \frac{4}{45}$	M1	3 factor probabilities for 2 or 3 correct scenarios added, no incorrect scenarios
	HTH: $\frac{2}{3} \times \frac{1}{3} \times \frac{4}{5} = \frac{8}{45}$		
	THH: $\frac{1}{3} \times \frac{2}{3} \times \frac{4}{5} = \frac{8}{45}$		
	$Total = \frac{20}{45} = \frac{4}{9}$	A1	AG, Total of 3 products with clear context
		3	
(b)	x 0 1 2 3	B1	Probability distribution table with correct outcomes with at least one probability, allow extra outcome values if probability of zero stated'
	Prob. $\frac{1}{45}$ $\frac{8}{45}$ $\frac{20}{45}$ $\frac{16}{45}$		
	43 43 43 43	B1	2 of P(0), P(1) and P(3) correct
		B1 FT	3 or 4 probabilities sum to 1 with P(2) correct
	V.O.	3	
(c)	$Var(X) = \frac{0^2 \times 1 + 1^2 \times 8 + 2^2 \times 20 + 3^2 \times 16}{45} - \left(\frac{32}{15}\right)^2$	М1	Substitute <i>their</i> attempts at scores in correct variance formula, must have '— mean ² ' (FT if calculated) (condone probs not summing to 1); must be at least 2 non-zero values
	$= \frac{8}{45} + \frac{80}{45} + \frac{144}{45} - \left(\frac{32}{15}\right)^2$		5000000
	136 or 0.604	A1	
		2	





 $224.\ 9709_m19_ms_62\ Q:\ 4$ 

Question		Answer				Marks	Guidance
(i)	x p	-1 k	1 k	2 4k	3 9k	B1	Probability distribution table with correct values of $x$ , no additional values unless with probability 0 stated, at least one correct probability including $k$
	15k = 1,				M1	Equating $\Sigma p = 1$ , may be implied by answer	
	$k = \frac{1}{15}$					A1	If 0 scored, SCB2 for probability distribution table with correct numerical probabilities.
						3	

Question	Answer	Marks	Guidance
(ii)	Method 1		
	$E(X) = 8k + 27k = 35k = \frac{35}{15} = \frac{7}{3}$	B1FT	FT if 0< their k<1
	$Var(X) = (k+k+16k+81k) - (35k)^{2}$	M1	Correct formula for variance, in terms of $k$ at least – must have '– mean ² '(ft).
	$=1.16, \frac{52}{45}$	A1	. 29
	Method 2		
	$E(X) = \frac{8}{15} + \frac{27}{15} = \frac{35}{15} = \frac{7}{3}$	B1FT	FT if 0< their k<1
	$Var(X) = \frac{1}{15} + \frac{1}{15} + \frac{16}{15} + \frac{81}{15} - \left(\frac{7}{3}\right)^2$	M1	Subst <i>their</i> values in correct var formula – must have – mean ^{2*} (ft) (condone probs not summing to exactly 1)
	= 1.16 (= 52/45)	A1	Using their values from (i)
		3	

225. 9709_s19_ms_61 Q: 6

Question	Answer	Marks	Guidance
(i)	P(loses \$1) = P( F and F) = $0.8 \times 0.8$	M1	0.8 x 0.8 or $(1 - 0.2)(1-0.2)$ or $P(F) \times P(F)$ or $P(F)+P(F)$ seen or implied
	= 0.64 AG	A1	Must see probabilities multiplied together with final answer and a clear probability statement or implied by labelled tree diagram
		2	

Question	Answer	Marks	Guidance
(ii)	Amount	B1	-1 linked with 0.64 in table
	gained (\$)	B1	0.5 seen in table
	Prob 0.16 0.2	B1	0.16 seen in table linked to their 0.5
		В1	FT P(2.00 gained) = 0.36 – P(0.50 gained) or correct, and all amount gained linked correctly in table
		4	
(iii)	E(winnings) = $-1 \times 0.64 + 0.5 \times 0.16 + 2 \times 0.2$ = $-(\$)0.16$ , $-16$ cents	B1	FT Accept (\$)0.16 or 16 cents loss. FT unsimplified E(winnings) from their table provided $\Sigma p = 1$
		1	





 $226.\ 9709_s19_ms_62\ Q\hbox{:}\ 3$ 

Question	Answer	Marks	Guidance
(i)	P(at most 7) = 1 - P(8, 9, 10) = 1 - 10 C8(0.35) 8 (0.65) 2 - 10 C9(0.35) 9 (0.65) 1 - (0.35) 10	M1	Use of normal approximation M0 Binomial term of form 10 C _x $p^x(1-p)^{10-x}$ 0 < $p$ < 1 any $p$ , $x \ne 10,0$
	[= 1 - 0.004281 - 0.0005123 - 0.00002759]	A1	Correct unsimplified (or individual terms evaluated) answer seen Condone $1-A+B+C$ leading to correct solution
	= 0.995	B1	B1 not dependent on previous marks.
	Alternative method for question 3(i)		
	P(at most 7) = P(0,1,2,3,4,5,6,7)	M1	Binomial term of form ${}^{10}C_xp^x(1-p)^{10-x}$ $0  any p, x \ne 10,0$
	$= (0.65)^{10} + {}^{10}C1(0.35)^{1}(0.65)^{9} + + {}^{10}C_{7}(0.35)^{7}(0.65)^{3}$	A1	Correct unsimplified answer or individual terms evaluated seen
	= 0.995	B1	
		3	
(ii)	1 - (0.65) ⁿ > 0.99 0.01 > (0.65) ⁿ	M1	Equation or inequality with $(0.65)^n$ and $0.01$ or $(0.35)^n$ and $0.99$ only (Note $1-0.99$ is equivalent to $0.01$ etc.)
	n > 10.69	M1	Solving their $a^n = c$ , $0 < a,c < 1$ using logs or Trial and Error If answer inappropriate, at least 2 trials are required for Trial and Error M mark
	smallest $n = 11$	A1	CAO
		3	40

### $227.\ 9709_s19_ms_62\ Q{:}\ 5$

Question	Answer	Marks	Guidance
(i)	5/9 T	B1	First pair of branches labels and probs correct (6/7 and 1/7 or rounding to 0.857 and 0.143)
	T 4/9	1	(Labelling must be logicallye.g. (T and T) or (T and Not T) would be acceptable)
	c	Bí	Either of second top pair or bottom of branches labels and probs correct
	1/7 C 6/9 T		
	3/9 C	B1	Both second pairs of branches labels and probs correct. No additional / further branches.
	100	3	
(ii)	No of toffees 0 2	B1	P(1) correct
	taken (T)	B1	P(0) or P(2) correct
	prob $\frac{3}{63}$ , $\frac{30}{63}$ , $\frac{30}{63}$ , $\frac{30}{63}$ , 0.476(2) 0.476(2)	В1	FT Correct values in table, any additional values of $T$ have stated probability of zero. For FT $\Sigma p = 1$ ,
		3	
i(iii)	$E(X) = \frac{90}{63} \ (\frac{10}{7}) \ (1.43)$	B1	Not FT
		1	





Question	Answer	Marks	Guidance
(iv)	$P(1^{\text{st}} C \mid 2^{\text{nd}} T) = \frac{P(C \cap T)}{P(T)} = \frac{\frac{1}{7} \times \frac{6}{9}}{\frac{1}{7} \times \frac{6}{9} + \frac{6}{7} \times \frac{5}{9}} = \frac{\frac{6}{63}}{\frac{36}{63}}$	B1	$P(C \cap T)$ attempt seen as numerator of a fraction, consistent with <i>their</i> tree diagram or correct
	$P(T)$ $\frac{1}{7} \times \frac{6}{9} + \frac{6}{7} \times \frac{5}{9} = \frac{36}{63}$	M1	Summing 2 appropriate two-factor probabilities, consistent with <i>their</i> tree diagram or correct seen anywhere
		A1	$\frac{36}{63}$ oe or correct unsimplifed expression seen as numerator or denominator of a fraction
	$\frac{1}{6}$ oe	A1	Final answer
		4	

 $228.\ 9709_s19_ms_63\ Q:\ 6$ 

Question	Answer								Marks	Guidance
(i)	score	1	2	3	4	6	9		B1	Probability distribution table with correct scores, allow extra score values if probability of zero stated
	prob	$\frac{3}{15}$	$\frac{4}{15}$	$\frac{4}{15}$	$\frac{1}{15}$	$\frac{2}{15}$	$\frac{1}{15}$		B1	2 probabilities (with correct score) correct
		13	13	15	13	13	13		B1	3 or more correct probabilities with correct scores
									B1	<b>FT</b> $\Sigma p = 1$ , at least 4 probabilities
									4	
(ii)	$mean = \frac{(3 + 1)^2}{2}$	1:	4+12+ 5	$\frac{(9)}{15} = \frac{48}{15}$	(3.2)				B1	
	$Var = \frac{(3+1)^2}{2}$	6+36+1 15	16+72+	81) – (the	ir3.2) ²				M1	FT Substitute <i>their</i> attempts at scores in correct var formula, must have "– mean ² " (condone probabilities not summing to 1)
	$=\frac{224}{15}-3.2$	$2^2 = 4.69$	$\left(\frac{352}{75}\right)$					B.	Ai	
									3	
(iii)	Score of 4, 6	6, 9							M1	Identifying relevant scores from their mean and their table
	Prob $\frac{4}{15}$ (0.	.267)				_	0	•	A1	Correct answer
	15 `					•				SC B1 for 4/15 with no working
					0				2	

229. 9709_w19_ms_61 Q: 2

Question	Answer	Marks	Guidance
(i)	$1 - (^{10}C_2 \ 0.42^8 \ 0.58^2 + {^{10}C_9} \ 0.42^9 \ 0.58^1 + 0.42^{10})$	M1	Binomial term of form ${}^{10}\text{C}_a p^a (1-p)^b \ 0$
	***	A1	Correct unsimplified expression
	0.983	A1	
		3	
(ii)	$1 - P(0) > 0.995 \ 0.58^n < 0.005$	M1	Equation or inequality involving 0.58" or 0.42" and 0.995 or 0.005
	$n > \frac{\log 0.005}{\log 0.58}$ $n > 9.727$	M1	Attempt to solve using logs or Trial and Error. May be implied by their answer (rounded or truncated)
	n = 10	A1	CAO
		3	





 $230.\ 9709_w19_ms_61\ Q:\ 4$ 

Question	Answer	Marks	Guidance
(i)	$\frac{1}{4} + p + p + \frac{3}{8} + 4p = 1$	M1	Unsimplified sum of probabilities equated to 1
	$p = \frac{1}{16}$	A1	If method FT from <i>their</i> incorrect (i), expressions for E(X) and Var(X) must be seen unsimplified with all probabilities <1, condone not adding to 1
		2	

Question	Answer	Marks	Guidance
(ii)	$[E(X)] = -\frac{1}{4} + \frac{1}{16} + \frac{6}{8} + 1 = \frac{25}{16}$	M1	May be implied by use in Variance, accept unsimplified
	$[Var(X)] = \frac{1}{4} + \frac{1}{16} + \frac{12}{8} + \frac{16}{4} - \left(their\frac{25}{16}\right)^2$	М1	Substitute into correct variance formula, must have '- their mean²'
	$\frac{863}{256}$ or 3.37	A1	OE OE
		3	10
(iii)	$P(X=2 X>0) = \frac{P(X=2)}{P(X>0)} = \frac{\frac{3}{8}}{\frac{11}{16}}$	M1	Conditional probability formula used consistent with their probabilities
	$\frac{6}{11}$ or 0.545	A1	XO.
		2	

 $231.\ 9709_w19_ms_62\ Q:\ 5$ 

Question	Answer	Marks	Guidance
(i)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1	Table with correct values of $x$ , at least 1 probability, all probabilities $\leq 1$
	100	B1	2 probabilities correct, may not be in table
		B1	2 more probabilities correct, may not be in table
		B1	All correct, values in table SC1 No more than 1 correct probability and at least 5 probabilities summing to 1 in table
		4	
(ii)	$[E(X)] = \left(\frac{-1+0+3+4+9+8}{12}\right) = \frac{23}{12}$	M1	May be implied by use in variance. Allow unsimplified expression
	$[Var(X)] = \frac{1+0+3+8+27+32(=71)}{12} - \left(\frac{23}{12}\right)^2$	M1	Appropriate variance formula using <i>their</i> $E(X)^2$
	$2.24 \text{ or } \frac{323}{144} \text{ or } 2\frac{35}{144}$	A1	CAO
		3	





232.  $9709_{\text{w}}19_{\text{ms}}63$  Q: 6

Question	Answer	Marks	Guidance
(i)	$P(RR) = \frac{3}{8} \times \frac{2}{7} = \frac{3}{28}$	B1	OE
		1	
(ii)	P(RW) + P(WR) $\frac{3}{8} \times \frac{5}{7} + \frac{5}{8} \times \frac{3}{7}$	M1	Method shown, numerical calculations identified, may include replacements
	$=\frac{15}{28}$	A1	AG, Fully correct calculations
	Alternative method for question 6(ii)		
	$1 - (P(RR) + P(WW))$ $1 - \left(\frac{3}{28} + \frac{5}{8} \times \frac{4}{7}\right)$	M1	Method shown, numerical calculations identified, may include replacements
	$=\frac{15}{28}$	A1	AG, Fully correct calculations
		2	10
(iii)	P(first red second red) = $\frac{their (i)}{their (i) + \frac{5}{8} \times \frac{3}{7}} = \frac{\frac{3}{8} \times \frac{2}{7}}{\frac{3}{8} \times \frac{2}{7} + \frac{5}{8} \times \frac{3}{7}} = \frac{\frac{3}{28}}{\frac{21}{56}}$	M1	Conditional probability formula used consistent with <i>their</i> probabilities or correct
	$=\frac{2}{7}$	A1	OE .
		2	

Question				An	swer	Marks	Guidance
(iv)	<i>x p</i>	0 10 28	1 15 28	$\begin{array}{ c c }\hline 2\\\hline\hline \frac{3}{28}\\\hline \end{array}$	20.	В1	Probability distribution table with correct values of <i>x</i> and at least one correct probability placed. Extra <i>x</i> values allowed with probability of zero stated.
					- 28	B1FT	Fully correct FT P(2) = their (i), P(1) = their (ii), $\Sigma(p) = 1$ .
	100						
(v)	$E(X) = \frac{30}{56} + \frac{12}{56} = \frac{42}{46}  \left( = \frac{3}{4} \right)$						May be implied by use in variance formula
	Var(X)	$=\frac{30}{56}+\frac{24}{56}$	$-\left(their\frac{3}{4}\right)$	$\left(\frac{3}{4}\right)^2$		M1	Substitute into correct variance formula, must have '— their mean²'  Must be for 2 or more non-zero x-values
	$\frac{45}{112}$ or (	0.402				A1	Correct final answer
						3	





### $233.\ 9709_m18_ms_62\ Q:\ 4$

Question	Answer	Marks	Guidance
(i)	$\Sigma p = 1: 0.2 + 0.1 + p + 0.1 + q = 1: p + q = 0.6$	M1	Unsimplified sum of probabilities equated to 1
	$\Sigma px = 1.7$ : $-0.4 + 0 + p + 0.3 + 4q = 1.7$ :	M1	Unsimplified Sum of px equated to 1.7
	p + 4q = 1.8	M1	Solve simult. equations to find expression in $p$ or $q$
	p = 0.2, q = 0.4	A1	
		4	
(ii)	$Var(X) = \sum px^2 - 1.7^2 = 4x0.2 + 1p + 9x0.1 + 16q - 1.7^2$ = 8.3 - 2.89	M1	Use correct unsimplified expression for variance
	= 5.41	A1	
		2	

### $234.\ 9709_s18_ms_61\ Q:\ 3$

Question	Answer	Marks	Guidance
(i)	$P(RB) + P(BR) = \frac{4}{12} \times \frac{8}{11} + \frac{8}{12} \times \frac{4}{11}$ oe	М1	Multiply 2 probs together and summing two 2-factor probs, unsimplified, condone replacement
	P(diff colours) = $\frac{64}{132} \left( \frac{16}{33} \right) (0.485)$ oe	A1	Correct answer
	Method 2 $1 - P(BB) - P(RR) = 1 - \frac{4}{12} \times \frac{3}{11} - \frac{8}{12} \times \frac{7}{11}$	M1	Multiply 2 probs together and subtracting two 2-factor probs from 1, unsimplified, condone replacement
	P(diff colours) = $\frac{64}{132}$ ( $\frac{16}{33}$ ) oe	A1	Correct answer
	Method 3 $P(diff colours) = \frac{\binom{4}{C_1} \times \binom{8}{C_1}}{\binom{12}{C_2}}$	MI	Multiply 2 combs together and dividing by a combination
	$=\frac{16}{33}$	A1	Correct answer
		2	
(ii)		В1	Prob distribution table drawn, top row correct, condone additional values with $p=0$ stated
	Y	В1	P(0) or P(2) correct to 3sf (need not be in table)
		B1	All probs correct to 3sf, condone P(0) and P(2) swapped if correct
	***	3	

Question	Answer	Marks	Guidance
(iii)	$E(X) = 1 \times \frac{16}{33} + 2 \times \frac{3}{33} = \frac{16}{33} + \frac{6}{33} = \frac{22}{33} (\frac{2}{3})$	B1ft	ft their table if 0, 1, 2 only, $0$
		1	





 $235.\ 9709_s18_ms_61\ Q:\ 6$ 

Question	Answer	Marks	Guidance
(i)	$P(SLL) = (0.3)(0.55)(0.55) = 0.09075 \left(\frac{363}{4000}\right)$	М1	P(SLL), P(SRR), P(SSL) or P(SSR) seen
	$P(SRR) = (0.3)(0.15)(0.15) = 0.00675 \left(\frac{27}{4000}\right)$	A1	Two correct options 0.09075 or 0.00675 can be unsimplified
	Total = ${}^{3}C_{1} \times P(SLL) + {}^{3}C_{1} \times P(SRR)$ = 0.27225 + 0.02025	M1	Summing 6 prob options not all identical
	Prob = 0.293 accept 0.2925 $(\frac{117}{400})$	A1	Correct answer
		4	
(ii)	$P(SSS \mid all \ same \ dir^n) = \frac{P(SSS \ and \ same \ dir^n)}{P(same \ direction)}$	B1	(0.3) ³ oe seen on its own as num or denom of a fraction
		M1	Attempt at P(SSS+LLL+RRR) seen anywhere
	$= \frac{0.3 \times 0.3 \times 0.3}{(0.15)^3 + (0.55)^3 + (0.3)^3}$	A1	$(0.15)^3 + (0.55)^3 + (0.3)^3$ oe seen as denom of a fraction
	$= 0.137 \left(\frac{108}{787}\right)$	A1	Correct answer
		4	

 $236.\ 9709_s18_ms_62\ Q\hbox{:}\ 4$ 

Question	Answer	Marks	Guidance
(i)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1	Prob distribution table drawn, top row correct with at least one probability $0  entered, condone additional values with p = 0 stated$
	$P(0) = \frac{5}{7} \times \frac{4}{6} \times \frac{3}{5} = \frac{2}{7} (0.2857)$	B1	One probability correct (need not be in table)
	$P(1) = \frac{2}{7} \times \frac{5}{6} \times \frac{4}{5} \times {}^{3}C_{1} = \frac{4}{7} (0.5713)$	B1	Another probability correct (need not be in table).
	$P(2) = \frac{2}{7} \times \frac{1}{6} \times \frac{5}{5} \times {}^{3}C_{2} = \frac{1}{7} (0.1429)$	B1	Values in table, all probs correct (to 3SF) or 3 probabilities summing to 1
		4	
(ii)	$Var(X) = 1 \times \frac{4}{7} + 4 \times \frac{1}{7} - (\frac{6}{7})^{2}$ $= \frac{8}{7} - (\frac{6}{7})^{2}$	M1	Unsimplified correct numerical expression for variance or <i>their</i> probabilities from (i) $0  in unsimplified variance expression$
	$=\frac{20}{49}$ or 0.408	A1	Correct answer (0.40816) nfww Final answer does <b>not</b> imply the method mark
		2	





### $237.\ 9709_s18_ms_63\ Q:\ 2$

Question	Answer	Marks	Guidance
(i)	z = 0.674	B1	z value ±0.674
	$0.674 = \frac{03}{\sigma}$	М1	±Standardising with 0 and equating to a z-value
	$\sigma = 4.45$	A1	Correct answer www ie not ignoring a minus sign
	Total:	3	
(ii)	P(0, 1)	M1	Any bin of form ${}^{8}C_{x}(0.75)^{x} (0.25)^{8-x}$ any $x$
	$= (0.75)^8 + {}^8C_1(0.25)(0.75)^7$	M1	Correct unsimplified answer, may be implied by numerical values
	0.1001+ 0.2670 = 0.367	A1	Correct answer
	Method 2 $1 - P(8,7,6,5,4,3,2) = 1 - (0.25)^8 - {}^8C_1(0.75)(0.25)^7$	M1	Any bin of form ${}^{8}C_{x}(0.75)^{x}(0.25)^{8-x}$ any x
	$-{}^{8}C_{2}(0.75)^{6}(0.25)^{2}$	M1	Correct unsimplified answer
	= 0.367	A1	Correct answer
	Total:	3	

### 238. 9709_s18_ms_63 Q: 5

Question			Answer			Marks	Guidance
(i)		0.25 × 0.5 = 0.25 × 0.5 =		0.5 + 0.6 ×	0.25 × 0.5 =	В1	0, 1, 2, 3 seen as top line of a pdf table OR attempting to evaluate P(0), P(1), P(2) and P(3)
	$P(2) = 0.4 \times 0.425$ $P(3) = 0.4 \times 0.425$			( 0.5 + 0.6 ×	0.75 × 0.5 =	M1	Multiply 3 probabilities together from 0.4 or 0.6, 0.25 or 0.75, 0.5 with or without a table
	No of heads	0	1	2	3	M1	Summing 3 probabilities for P(1) or P(2) with or without a table
	Prob	0.075	0.35	0.425	0.15	В1	One correct probability seen.
		$\left(\frac{3}{40}\right)$	$\left(\frac{1}{20}\right)$	$\left(\frac{1}{40}\right)$	$\left(\frac{3}{20}\right)$	A1	All correct in a table
					Total:	5	
(ii)	E(X) = 0.35	+ 2 × 0.425	+ 3 × 0.15 =	$1.65 \left(\frac{33}{20}\right)$	oe	M1	Correct unsimplified expression for the mean using their table, $\sum p = 1$ ; can be implied by correct answer
(ii)	Var(X) = 0.3	$35 + 4 \times 0.42$	$25 + 9 \times 0.15$	$-1.65^2$		M1	Correct unsimplified expression for the variance using their table and their mean subtracted, $\sum p = 1$
	= 0.678 (0.6	$(5775)$ $\left(\frac{271}{400}\right)$	oe)			A1	Correct answer
	**				Total:	3	

# 239. 9709_w18_ms_61 Q: 2

Question	Answer	Marks	Guidance
(i)	6 <i>p</i> + 0.1 = 1 <i>p</i> = 0.15	B1	Correct answer
		1	
(ii)	$Var(X) = 1 \times p + 1 \times 2p + 4 \times 2p + 16 \times 0.1 - 1.15^{2}$	M1	Correct unsimplified formula, their p substituted (allow 1 error)
	$ 0.15 + 0 + 0.3 + 1.2 + 1.6 - 1.15^{2} $ = 1.9275 = 1.93 (3sf)	A1	Correct answer
		2	





 $240.\ 9709_w18_ms_62\ Q\hbox{:}\ 3$ 

Question	Answer	Marks	Guidance
(i)	Method 1		
	$P(3) + P(4) + P(5) = {}^{5}C_{3} \ 0.75^{3} \times 0.25^{2} + $	M1	One binomial term ${}^5\mathrm{C}_{x}p^x(1-p)^{5\cdot x}$ , $x \neq 0$ or 5, any $p$
	⁵ C ₄ 0.75 ⁴ × 0.25 ¹ + ⁵ C ₅ 0.75 ⁵ × 0.25 ⁰	M1	Correct unsimplified expression
	= 0.26367 + 0.39551 + 0.23730 = 0.896 (459/512)	A1	Correct final answer, allow 0.8965 (isw) but not 0.897 alone
	Method 2		
	$1 - P(0) - P(1) - P(2) = 1 - {}^{5}C_{0} \ 0.75^{0} \times 0.25^{5}$	M1	One binomial term ${}^5C_xp^x(1-p)^{5\cdot x}$ , $x \neq 0$ or 5, any $p$
	$- {}^{5}C_{1} \ 0.75^{1} \times 0.25^{4} - {}^{5}C_{2} \ 0.75^{2} \times 0.25^{3}$	M1	Correct simplified expression
	= 1 - 0.00097656 - 0.014648 - 0.087891 = 0.896 (459/512)	A1	Correct final answer, allow 0.8965 (isw) but not 0.897 alone
		3	

Question	Answer	Marks	Guidance
(ii)	Method 1		70)
	P(C,C) + P(C,C') + P(C',C) 0.8 × 0.9	B1	Unsimplified prob completed on both days
	$0.8 \times 0.1 + 0.2 \times 0.6$	M1	Unsimplified prob $0.8 \times a + 0.2 \times b$ , $a = 0.1$ or $0.4$ , $b = 0.6$ or $0.9$
	= 0.92 oe	A1	Correct final answer
	Method 2		
	$1 - P(C',C') = 1 - 0.2 \times 0.4$	B1	Unsimplified prob completed on no days
		M1	$1-0.2 \times a$ , $a$ =0.1or 0.4 allow unsimplified
	= 0.92	A1	Correct final answer
		3	
$P(S,S') = \frac{4}{11}$	$\frac{7}{10} = \frac{28}{110}$		
$P(P,P') = \frac{2}{11}$	9 18		
$P(I,I') = \frac{4}{11} \times$			
$P(M,M') = \frac{1}{1}$	$\frac{1}{1} \times \frac{10}{10} = \frac{10}{110}$		
$Total = \frac{84}{110}$			
P(Same) = 1 -	$\frac{84}{110} = \frac{26}{110}$		

$$P(S,S') = \frac{4}{11} \times \frac{7}{10} = \frac{28}{110}$$

$$P(P,P') = \frac{2}{11} \times \frac{9}{10} = \frac{18}{110}$$

$$P(I,I') = \frac{4}{11} \times \frac{7}{10} = \frac{28}{110}$$

$$P(M,M') = \frac{1}{11} \times \frac{10}{10} = \frac{10}{110}$$

$$Total = \frac{84}{110}$$

$$P(I,I') = \frac{4}{11} \times \frac{7}{10} = \frac{28}{110}$$

$$P(M,M') = \frac{1}{11} \times \frac{10}{10} = \frac{10}{110}$$

$$Total = \frac{84}{110}$$

$$P(Same) = 1 - \frac{84}{110} = \frac{26}{110}$$

 $P(Same) = 1 - \frac{84}{110} = \frac{26}{110}$  **B1** one of products correct **M1** 1 – sum of probabilities from 4 appropriate scenarios **A1** Correct final answer





### $241.\ 9709_w18_ms_62\ Q:\ 6$

Question	Answer	Marks	Guidance
(i)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1	-2,-1,0,1,2,3 seen as top line of a pdf table with at least 1 probability OR attempting to evaluate P( $-2$ ), P( $-1$ ), P(0), P(1), P(2), P(3) (condone additional values with $p=0$ stated)
		B1	At least 4 probs correct (need not be in table)
		B1	All probs correct in a table
		3	
(ii)	$E(X) = \frac{-2 \times 1 - 1 \times 2 + 0 + 1 \times 3 + 2 \times 2 + 1 \times 3}{12} = 0.5$	M1	Unsimplified expression for mean using <i>their</i> pdf table (or correct) with at least 2 non-zero values (may be seen in variance). Numerator terms may be implied by values.
	$Var(X) = \frac{(-2)^2 \times 1 + (-1)^2 \times 2 + 1^2 \times 3 + 2^2 \times 2 + 3^2 \times 1}{12} - (their \ 0.5)^2$	M1	Unsimplified expression for variance using <i>their</i> pdf table (or correct) with at least 2 non-zero values and <i>their</i> $E(X)$ . Numerator terms may be implied by values. If $-k^2$ is seen for $(-k)^2$ , the method must be confirmed by seeing value used correctly
	26/12 -1/4 = 23/12	A1	Correct final answer
		3	40

Question	Answer	Marks	Guidance
(iii)	Method 1		
	P(X  non-zero) = 9/12	B1ft	If Binomial distribution used $0/3$ P(X non-zero) ft from <i>their</i> pdf table, $\Sigma p=1$ oe
	$P(X=1 \mid X \text{ non-zero}) = \frac{P(X=1 \cap X \text{ non-zero})}{P(X \text{ non-zero})} = \frac{\frac{3}{12}}{\frac{9}{12}}$	M1	Their $P(X = 1)$ /their $P(X \text{ non-zero})$ from their pdf table oe
	= 1/3 oe	A1	Correct final answer www
	Method 2	,	
	$P(X=1 \mid X \text{ non-zero}) = \frac{Number of outcomes}{Number of non-zero outcomes}$	B1ft	Number of non-zero outcomes (expect 9) ft from <i>their</i> outcome table or pdf table numerators oe
	40	M1	a/b, $a = their$ 3 from their outcome table or pdf table numerators, $b = their$ 9 (not 12)
	$=\frac{3}{9}=\frac{1}{3}$ oe	A1	Correct final answer www
		3	

## 242. 9709_w18_ms_63 Q: 2

Question	Answer	M	<b>Iarks</b>	Guidance
(i)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} 3 \\ \hline \frac{1}{18} \end{array}$	В1	-2, $-1,$ $0,$ $1,$ $2,$ $3$ seen as top line of a pdf table OR attempting to evaluate P(-2), P(-1), P(0), P(1), P(2), P(3),
			B1	At least 4 probs correct (need not be in table)
			В1	All probs correct in a table
			3	





Question	Answer	Marks	Guidance
(ii)	$E(X) = \frac{-4 - 4 + 0 + 4 + 4 + 3}{18} = \frac{1}{6}$	M1	Correct unsimplified expression for the mean using their table, $\Sigma p = 1$ , may be implied
	$Var(X) = \frac{8+4+0+4+8+9}{18} - \left(\frac{1}{6}\right)^2$ $= 11/6 - 1/36 (1.8333 - 0.02778)$	M1	Correct, unsimplified expression for the variance using their table, and their mean subtracted. Allow $\Sigma p \neq 1$
	= 65/36, (1.81)	A1	Correct answer
		3	

 $243.\ 9709_m17_ms_62\ Q:\ 2$ 

Question	Answer	Marks	Guidance
	$\frac{^{12}C_{3}\times ^{^{28}}C_{4}}{^{40}}$	M1	Using combinations with attempt to evaluate 2 terms in num. and 1 in denom.
		M1	Correct numerator or denominator unsimplified
	= 0.242	A1	
	OR		
	$P(GGG) = \frac{12}{40} \times \frac{11}{39} \times \frac{10}{38} \times \frac{28}{37} \times \frac{27}{36} \times \frac{26}{35} \times \frac{25}{34} \times {}^{7}C_{3}$	M1	Multiplying 3 green probs with 4 non-green probs, without replacement
		M1	Multiplying by ⁷ C ₃
	= 0.242	A1	
	Total:	3	

244. 9709_m17_ms_62 Q: 6

Question			A	nswer		Marks	Guidance
(i)	P(2) = P(0, 1)	2) = 2/10	× 4/6			M1	Mult 2 probs seen (or complete listing of all options)
	= 2/15				A	A1	Correct answer legit obtained
					Tota	: 2	2
(ii)	x P(X=x)	0 2/30	5/30	2 4/30	3 5 13/30 6/30	B1	Correct values for $x$ in table. Any additional values must have $P(x)=0$ stated
						B1	One correct prob other than P(2) or P(3)
					0	B1	B1 Correct P(3)
				/		B1	B1 All correct
					Tota	1: 4	4
(iii)	P(A1 Sum	31	Al ∩Sun P(Sum3)		10×4/6 13/30	M1	Attempt at $P(A1 \cap Sum 3)$ as num or denom of a fraction, can be by counting
	1,0			<b>&gt;</b>		M1	Their P(3) from (ii) as num or denom of a fraction
	= 10/13(0.7	769)				A1	A1
					Tota	1: 3	3





### $245.\ 9709_s17_ms_61\ Q{:}\ 5$

(i)	p = 0.07	B1	
	$P(2) = {}^{20}C_2(0.07)^2(0.93)^{18}$	М1	Bin term ${}^{20}\text{C}_x p^x (1-p)^{20-x}$ their p
	= 0.252	A1	
	Total:	3	
(ii)	P(at least 1 cracked egg)=1-(0.93) ²⁰ =1-0.2342	M1	Attempt to find P(at least1 cracked egg) with their $p$ from (i) allow $1 - P(0, 1)$ OE
	= 0.766	A1	Rounding to 0.766
	Total:	2	
(iii)	$(0.7658)^{n} < 0.01$	M1	Eqn or inequal containing (their 0.766) ⁿ or (their 0.234) ⁿ , together with 0.01 or 0.99
	n = 18	A1	
	Total:	2	

### $246.\ 9709_s17_ms_62\ Q\hbox{:}\ 3$

(i)	$k(-2)^2$ is the same as $k(2)^2 = 4k$	B1	need to see $-2^2 k$ , $2^2 k$ and $4k$ , algebraically correct expressions OE
	Tota	: 1	
(ii)	$ \begin{array}{ c c c c c c c c c }\hline x & -2 & -1 & 2 & 4 \\ \hline \text{Prob} & 4k & k & 4k & 16k \\ \hline \end{array} $	В1	-2, -1, 2, 4 only seen in a table, together with at least one attempted probability involving $k$
	4k + k + 4k + 16k = 1	M1	Summing 4 probs equating to 1. Must all be positive (table not required)
	$k = 1/25 \ (0.04)$	A1	cwo
	Tota	3	
(iii)	E(X) = -8k + -k + 8k + 64k = 63k	М1	using $\Sigma px$ unsimplified. FT their $k$ substituted before this stage, no inappropriate dividing
	= 63/25 (2.52)	A1	
	Tota	: 2	

# 247. 9709_s17_ms_62 Q: 4

Question	Answer	Marks	Guidance
4	P(score is  6) = P(3, 3)	M1	Realising that score 6 is only P(3, 3)
	$= r^2 = 1/36$ r = 1/6	A1	Correct ans [SR <b>B2</b> $r = 1/6$ without workings]
	P(2, 3) + P(3, 2) = 1/9 qr + rq = 1/9	M1	Eqn involving $qr$ (OE) equated to 1/9 ( $r$ may be replaced by $their$ 'r value')
	q/6 + q/6 = 1/9	M1	Correct equation with their 'r value' substituted
	q = 1/3	A1	Correct answer seen, does <b>not</b> imply previous M's
	p = 1 - 1/6 - 1/3 = 1/2	B1 FT	FT their $p$ + their $r$ + their $q$ =1 , $0$
	Total:	6	





 $248.\ 9709_s17_ms_62\ Q\hbox{:}\ 7$ 

Question	Answer	Marks	Guidance
(i)	$P(H) = P(BH) + P(SH) = 0.6 \times 0.05 + 0.4 \times 0.75$	M1	Summing two 2-factor probs using 0.6 with 0.05 or 0.95, and 0.4 with 0.75 or 0.25
	$= 0.330 \text{ or } \frac{33}{100}$	A1	Correct final answer accept 0.33
	Total:	2	
(ii)	$P(S H) = \frac{P(S \cap H)}{P(H)} = \frac{0.4 \times 0.75}{0.33} = \frac{0.3}{0.33}$	M1 FT	Their $\frac{P(S \cap H)}{P(H)}$ unsimplified, FT from (i)
	$=\frac{10}{11}$ or 0.909	A1	
	Total:	2	
(iii)	$Var (B) = 45 \times 0.6 \times 0.4$ $Var (S) = 45 \times 0.4 \times 0.6$	B1	One variance stated unsimplified
	Variances same	В1	Second variance stated unsimplified and at least one variance clearly identified, and both evaluated or showing equal or conclusion made  SR B1 – Standard Deviation calculated Fulfil all the criteria for the variance method but calculated to Standard Deviation
	Total:	2	4

Question	Answer		Marks	Guidance
(iv)	$\begin{split} &1-P(0,1)\\ &=1-\left[(0.6)^{10}+{}^{10}C_1(0.4)(0.6)^9\right]=1-0.0464\\ &OR\\ &P(2,3,4,5,6,7,8,9,10)\\ &={}^{10}C_2(0.4)^2(0.6)^8+\ldots+{}^{10}C_9(0.4)^9(0.6)+(0.4)^{10} \end{split}$	20	Mi Mi	Bin term ${}^{10}C_x p^x (1-p)^{10-x}$ $0Correct unsimplified answer$
	= 0.954		A1	
		Total:	3	

249. 9709_s17_ms_63 Q: 5

Question	Answer	Marks	Guidance
(i)	constant probability (of completing)	B1	Any one condition of these two
	independent trials/events	B1	The other condition
	Totals:	2	
(ii)	$P(5, 6, 7) = {}^{7}C_{5}(0.7)^{5}(0.3)^{2} + {}^{7}C_{6}(0.7)^{6}(0.3)^{1} + (0.7)^{7}$	M1 A1	Bin term ${}^{7}C_x(0.7)^x(0.3)^{7x}$ , $x \neq 0, 7$ Correct unsimplified answer (sum) OE
	= 0.647	A1	
	Total:	3	
(iii)	P(0, 1, 2, 3, 4) = 1 - their '0.6471' = 0.3529	M1	Find P( $\leq$ 4) either by subtracting their (ii) from 1 or from adding Probs of 0,1,2,3,4 with $n$ =7 (or 10) and $p$ = 0.7
	$P(3) = {}^{10}C_3(0.3529)^3(0.6471)^7$	M1	¹⁰ C ₃ (their 0.353) ³ (1 – their 0.353) ⁷ on its own
	= 0.251	A1	





 $250.\ 9709_s17_ms_63\ Q:\ 6$ 

	4		
(a)(i)	First digit in 2 ways. $2 \times 4 \times 3 \times 2$ or $2 \times 4P3$		1, 2 or 3 × 4P3 OE as final answer
	Total = 48 ways	A1	
	Total:	2	
(a)(ii)	2 × 5 × 5 × 3	M1 M1	Seeing 5 ² mult; this mark is for correctly considering the middle two digits with replacement Mult by 6; this mark is for correctly considering the first and last digits
	= 150 ways	A1	
	Totals:	3	

Question	Answer	Marks	Guidance
(b)(i)	OO**** in ¹⁸ C ₄ ways	M1	18 C _x or the sum of five 2-factor products with $n = 14$ and 4, may be × by 2C2: 4 C0 × 14 C4 + 4 C1 × 14 C3 + 4 C2 × 14 C2 + 4 C3 × 14 C1 + 4 C4 (× 14 C0)
	= 3060	A1	
	Totals:	2	

Question		Answer	Marks	Guidance
(b)(ii)	Choe 0 1 2 OR Choe 0 0 0 1 1 1 1 1 2 2 2 2	Not Choc $6=1 \times {}^{16}C_6=8008\ 0.2066$ $5={}^{4}C_1 \times {}^{16}C_5=17472\ 0.4508$ $4={}^{4}C_2 \times {}^{16}C_4=10920\ 0.2817$ Oats Ginger 0 6 1 5 2 4 0 5 1 4 2 3 0 4 1 3 2	B1	The correct number of ways with one of 0, 1 or 2 chocs, unsimplified or any three correct number of ways of combining choc/oat/ginger, unsimplified
	Total = 36400 ways	Box	M1	totally correct, unsimplified OR sum the nine combinations of choc, ginger, oats, six must be totally correct, unsimplified
	Probability = 36400/3	C ₆		
	=0.939 (910/969)	V	A1	
		Totals	: 4	

 $251.\ 9709_w17_ms_61\ Q:\ 1$ 

Question	Answer	Marks	Guidance
	p+q=0.45	M1	Equation involving $\Sigma P(x) = 1$
	0.15 + 2p + 1.2 + 6q = 3.05	M1	Equation using $E(X) = 3.05$
	q = 0.2	M1	Solving simultaneous equations to one variable
	p = 0.25	A1	Both answers correct
		4	





 $252.\ 9709_w17_ms_61\ Q:\ 3$ 

Question	Answer	Marks	Guidance
(i)	p = 0.207	B1	
		1	
(ii)	$Var = 30 \times 0.207 \times 0.793 = 4.92$	B1	
		1	
(iii)	$P(\geqslant 2) = 1 - P(0, 1)$	M1	
	$= 1 - (0.793)15 - \binom{15}{1}(0.207)(0.793)14$	M1	1 - P(0, 1) seen $n = 15$ $p = $ any prob
	= 0.848	A1	
		3	

 $253.\ 9709_w17_ms_62\ Q\hbox{:}\ 3$ 

Question	Answer	Marks	Guidance
(i)	EITHER: $P(X=3) = P(RRB) = \frac{2}{6} \times \frac{1}{5} \times \frac{4}{4}$	(M1	probabilities in order $\frac{2}{p} \times \frac{1}{q} \times \frac{4}{r}$ , $p, q, r \le 6$ and $p \ge q \ge r$ , $r \ge 4$ , accept $\times$ 1 as $\frac{4}{r}$ .
	$=\frac{1}{15}$ AG	A1)	Needs either P(RRB) OE stated or identified on tree diagram.
	ORI: $P(X = 3) = P(RRB) = \frac{{}^{2}C_{2}}{{}^{6}C_{2}} \times \frac{{}^{4}C_{1}}{{}^{4}C_{1}}$	(M1	probabilities stated clearly, $\times \frac{^4C_1}{^4C_1}$ or $\times 1$ or $\times \frac{4}{4}$ included
	$=\frac{1}{15} \text{ AG}$	A1)	Needs either P(RRB) OE stated or identified on tree diagram.
	OR2: $P(X=3) = P(RRB) = \frac{{}^{2}C_{1}}{{}^{6}C_{1}} \times \frac{{}^{1}C_{1}}{{}^{5}C_{1}} \times \frac{{}^{4}C_{1}}{{}^{4}C_{1}}$	(M1	probabilities in order $\frac{^2C_1}{^PC_1} \times \frac{^1C_1}{^4C_1} \times \frac{^4C_1}{^rC_1} p, q, r \leqslant 6$ and $p \geqslant q \geqslant r, r \geqslant 4$ $(\times \frac{^4C_1}{^4C_1} \text{ or } \times 1 \text{ or } \times \frac{4}{4} \text{ acceptable})$
	= 1/15 AG	A1)	Needs either P(RRB) OE stated or identified on tree diagram.
		2	

Question		Answer	Marks	Guidance
(ii)	$P(1) = P(B) = \frac{4}{6} (\frac{2}{3} =$	= 0.667)	B1	Probability distribution table drawn with at least 2 correct $x$ values and at least 1 probability. All probabilities $0 \le p < 1$ .
	$P(2) = P(RB) = \frac{2}{6} \times -$	$\frac{4}{5} = \frac{4}{15} \ (= 0.267)$	B1	P(1) or P(2) correct unsimplified, or better, and identified.
	$P(3) = P(RRB) = \frac{2}{6} \times$	$\frac{1}{5} \times \frac{4}{4} = \frac{1}{15} \ (= 0.0667)$	В1	All probabilities in table, evaluated correctly OE. Additional $x$ values must have a stated probability of $0$
	$ \begin{array}{c cccc} x & 1 & 2 \\ P & \frac{10}{15} & \frac{4}{15} \end{array} $	$\begin{array}{c c} 3 \\ \hline \frac{1}{15} \end{array}$		
			3	





 $254.\ 9709_w17_ms_62\ Q:\ 4$ 

Question	Answer	Marks	Guidance
(i)	$P(4, 2H) = \frac{1}{4} \times {}^{4}C_{2} \times (\frac{1}{3})^{2} (\frac{2}{3})^{2}$	M1	Multiplying their 2H expression by ½ [P(4)]
	4 2 3/3/	M1	Remaining factor is $(\frac{1}{3})^2(\frac{2}{3})^2$ [or $\frac{4}{81}$ ] multiplied by integer value
			$k \geqslant 1 \text{ OE}$
	$=\frac{2}{27} (0.0741)$	A1	
		3	
(ii)	P(3, 3H) = $\frac{1}{4} \times (\frac{1}{3})^3 = \frac{1}{108}$ (0.00926)	B1	
		1	
(iii)	$P(1, 1H) = \frac{1}{4} \times \frac{1}{3} = \frac{1}{12} (0.08333)$	M1	Correct expression for 1 of P(1, 1H), P(2, 2H), P(4, 4H) Unsimplified (or better)
	P(2, 2H) = $\frac{1}{4} \times (\frac{1}{3})^2 = \frac{1}{36}$ (0.02778) P(3, 3H) = $\frac{1}{4} \times (\frac{1}{3})^3 = \frac{1}{108}$ (0.009259) P(4, 4H) = $\frac{1}{4} \times (\frac{1}{3})^4 = \frac{1}{324}$ (0.003086)	M1	Summing their values for 3 or 4 appropriate outcomes for the 'game' with no additional outcomes.
	$Prob = \frac{10}{81} (0.123)$	A1	
		3	10

 $255.\ 9709_w17_ms_63\ Q:\ 1$ 

Question	Answer	Marks	Guidance
	EITHER: P(at least 1 completes) = $1 - P(0 \text{ people complete})$ = $1 - (0.8)^3$	(M1	Fully correct unsimplified expression $1 - (0.8)^3$ OE
	$=0.488\left(\frac{61}{125}\right)$	A1)	
	OR1: $P(1, 2, 3) = {}^{3}C_{1}(0.2)(0.8)^{2} + {}^{3}C_{2}(0.2)^{2}(0.8) + (0.2)^{3}$	(M1	Unsimplified correct 3 term expression
	$=0.488\left(\frac{61}{125}\right)$	A1)	
	OR2: 0.2+0.8×0.2+0.8×0.2	(M1	Unsimplified sum of 3 correct terms
	$=0.488 \left(\frac{61}{125}\right)$	A1)	
		2	

 $256.\ 9709_w17_ms_63\ Q:\ 4$ 

Question	Answer						Marks	Guidance
(i)	x	-3	0	5	32	]	B1	At least 3 different correct values of X (can be unsimplified)
	Prob	1/6	1/2	1/6	1/6		B1	Four correct probabilities in a Probability Distribution table
			B1	Correct probs with correct values of $X$				
							3	





Question	Answer	Marks	Guidance
(ii)	E(X) = -3/6 + 5/6 + 32/6 = 34/6 = 17/3 (5.67)	М1	Subst their attempts at scores in correct formula as long as 'probs' sum to 1
	$Var(X) = 9/6 + 25/6 + 1024/6 - (34/6)^2$	M1	Subst their attempts at scores in correct var formula
	$=144\left(\frac{1298}{9}\right)$	A1	Both answers correct
		3	

257. 9709_m16_ms_62 Q: 2

2	No of W	0	1	2	B1	0, 1, 2, seen in table with attempt at prob.
	Prob	42/90	42/90	6/90		
	P(0) = 8/10			× 9/0 × 7/9	M1	3-factor prob seen with different denoms.
	$P(1W) = P(Y \times 3)$ $= 42A$		) × 3 = 2/10	× 8/9 × 1/8	M1	Mult by 3
	P(2W) = P(Y)		$\times$ 3 = $2/10$	× 1/9 × 8/8	<b>A1</b> 4	All correct
	× 3 = 6/9	90				:.0

258. 9709_s16_ms_61 Q: 2

2	P (throwing a 4) = $(1 - 0.4) / 4$ = 0.15	M1 A1	Sensible attempt to find P(1) Correct answer
	P(at most 1) = P(0, 1) or 1 – P(2, 3) = $(0.85)^3 + {}^3C_1 (0.15) (0.85)^2$	M1 M1	A binomial term with ${}^{3}C_{n}$ oe any $p$ Binomial expression with ${}^{3}C_{n}$ P(0, 1) or $1 - P(2, 3)$
	= 0.939	<b>A1</b> [5]	p = 0.15  or  0.85

259. 9709_s16_ms_61 Q: 4

4	$[P(X=0)] = P(B, B) = 5/7 \times 4/6 = 10/21$	M1	Attempt to find P(0) or P(1) or P(2) can be seen as P(BB) etc. or table unsimplified
44	$[P(X=1)] = P(G,B) + P(B,G) = 2/7 \times 5/6 \times 2$ = 10/21	A1	P(1) or P(BG)+P(GB) correct
••	$[P(X=2] = P(G, G) = 2/7 \times 1/6 = 1/21$	A1	P(0) or P(2) correct must see X value
	E(X) = 0 + 10/21 + 2/21 = 4/7 (0.571)	B1√	Correct answer ft their probs P(1) and P(2)
	$Var(X) = 0 + 10/21 + 4/21 - (4/7)^{2}$ = 50/147 (0.340)	M1 A1 [6]	Attempt at $\Sigma x^2 p - [E(X)]^2$





260. 9709_s16_ms_62 Q: 3

3 (i)		<ul> <li>B1 Probability Distribution Table, either k or correct numerical values</li> <li>M1 Summing probs involving k to = 1, 3 or 4</li> </ul>
	k = 1/10	A1 [3] terms
(ii)	$E(X) = 1/10 + 4/10 + 9/10 + 16/10 = 3$ $Var(X) = 1/10 + 8/10 + 27/10 + 64/10 - 3^{2}$ $= 1$	B1 Correct mean Correct method seen for var, their $k$ and $\mu$

 $261.\ 9709_s16_ms_62\ Q\hbox{:}\ 4$ 

4 <b>(i)</b>	$p = 0.66X \sim B(15, 0.66)$	M1	Bin term ${}^{15}C_x p^x (1-p)^{15-x}$ seen any $p$
	P(at least 14) = P(14, 15) = ${}^{15}C_{14} (0.66)^{14} (0.34) + (0.66)^{15}$	M1	Unsimplified correct expression for
	= 0.0171	A1 [3]	P(14,15)
(ii)	$(0.87)^{n} < 0.04$	M1	Eqn involving 0.87, power of n, 0.04 only
		M1	Solving by logs or trial and error(can be implied).  Must be exponential equation
	n=24	<b>A1</b> [3]	with the exponential equation

262. 9709_s16_ms_63 Q: 3

(i)	P(0) = 6/36, P(1) = 10/36, P(2) = 8/36	B1		Table oe seen with 0, 1, 2, 3, 4, 5 (6 if
	P(3) = 6/36, P(4) = 4/36, P(5) = 2/36	B1 M1 A1	[4]	P(6) = 0) Any three probs correct $\Sigma p = 1$ and at least 3 outcomes All probs correct
(ii)	mean score = $(0 \times 6 + 1 \times 10 + 16 + 18 + 16 + 10)/36$	M1	ניין	Using $\Sigma xp$ (unsimplified) on its own – condone
	= 70/36 (35/18, 1.94)	A1	[2]	$\sum p \text{ not} = 1$

263. 9709_w16_ms_61 Q: 1

z = 0.674	M1		±0.674 seen
$0.674 = \frac{k - 20}{7}$	M1		Standardising no cc, no sq, no
k=24.7	<b>A1</b>	[3]	sq rt





 $264.\ 9709_w16_ms_61\ Q\hbox{:}\ 2$ 

2	diff	0	1	2	3	4	5	B1		0, 1, 2, 3, 4, 5 seen in table heading or considering all
	prob	6/36	10/36	8/36	6/36	4/36	2/36			different differences
								M1		Attempt at finding prob of any difference
								A1		1 correct prob
	Expect	ation =	(0+10+	-16+18-	+16+10	)/36		M1		Probs summing to 1
	= 70/36									
		=	= 1.94					A1	[5]	

 $265.\ 9709_w16_ms_61\ Q:\ 3$ 

(i)	$0.9 \times 0.95 \times 0.85 \times 0.1 = 0.0727$	B1	[1]	
(ii)	P(0, 1, 2)	M1		Bin term ${}^{12}C_x(p)^x(1-p)^{12-x}$ p
	= $(0.9)^{12} + {}^{12}C_1 (0.1)(0.9)^{11} + {}^{12}C_2 (0.1)^2 (0.9)^{10}$	M1		$< 1, x \neq 0$ Bin expression $p = 0.1$ or 0.9, $n = 12, 2$ or 3 terms
	= 0.889	A1	[3]	-12, 2 of 3 terms
(iii)	$X \sim B(50, 0.85)$	M1	1	$50 \times 0.85$ seen oe can be
	Expectation = $50 \times 0.85$ (= 42.5) Var = $50 \times 0.85 \times 0.15$ (= 6.375)	A1	[2]	implied Correct unsimplified mean and var

266. 9709_w16_ms_62 Q: 2

2 <b>(i)</b>	$P(1 \text{ T-shirt}) = \frac{{}^{3}C}{C}$	$\frac{C_1 \times {}^9C_2}{{}^{12}C_3}$		B1 B1		Correct num unsimplified Correct denom unsimplified
	= 27/55 AG				[3]	Answer given, so process needs to be convincing
	<b>OR</b> 3/12×9/11×8	$/10 \times {}^{3}\mathrm{C}_{1}\mathrm{oe}$	6	M1 M1		Mult 3 probs diff denoms (not a/3 x b/4 x c/5) Mult by 3C_1 oe
	= 27/55	100	AG	A1		Answer given, so process needs to be convincing
(ii)	X 0	1 2	3	B1		0, 1, 2, 3 only seen in top line (condone additional values if Prob stated as 0)
	Prob 84/220	27/55 27/220	1/220			additional values if 1700 stated as 0)
	*			B1 B1 B1√	[4]	One correct prob, correctly placed in table One other correct prob, correctly placed in table One other correct prob ft $\Sigma p = 1$ , 4 values in table

267. 9709_w16_ms_63 Q: 2

(i)	$p = 1/3$ $P(\geqslant 2) = 1 - P(0, 1) = 1 - (2/3)^4 - {}^4C_1(1/3)(2/3)^3$ or $P(2,3,4) = {}^4C_2(1/3)^2(2/3)^2 + {}^4C_3(1/3)^3(2/3) + (1/3)^4$ $= \frac{11}{27}, 0.407$	M1 M1 A1	[3]	Bin term ${}^4C_xp^x(1-p)^{4-x}$ $0Correct unsimplified answer$
(ii)	P(sum is 5) = P(1, 1, 1, 2) ×4 = $(1/3)^4 \times 4$ = $\frac{4}{81}$ , 0.0494	M1 M1 A1	[3]	1, 1, 1, 2 seen or 4 options Mult by (1/3) ⁴





268. 9709_s15_ms_62 Q: 1

P(3, 4, 5) =	M1	Bin expression of form ${}^{10}C_x(p)^x(1-p)^{10-x}$ any $p$
$\begin{vmatrix} {}^{10}C_{3} \left(\frac{1}{6}\right)^{3} \left(\frac{5}{6}\right)^{7} + {}^{10}C_{4} \left(\frac{1}{6}\right)^{4} \left(\frac{5}{6}\right)^{6} + {}^{10}C_{5} \left(\frac{1}{6}\right)^{5} \\ \left(\frac{5}{6}\right)^{5} \end{vmatrix}$	A1	Correct unsimplified answer accept (0.17, 0.83), (0.16, 0.84), (0.16, 0.83), (0.17, 0.84) or more accurate
(6)	A1 3	Correct answer
= 0.222		

 $269.\ 9709_s15_ms_62\ Q\hbox{:}\ 5$ 

(i)	P(2Es 1O) = $\frac{3}{5} \times \frac{2}{4} \times \frac{2}{3} \times {}^{3}C_{2} = \frac{3}{5}$ (0.6)	M1 M1 A1 3	5×4×3 seen in denom Mult a prob by ${}^{3}C_{2}$ oe Correct answer
	OR	AI 3	Correct answer
	P(2Es 1O) = $\frac{{}^{3}C_{2}\times^{2}C_{1}}{{}^{5}C_{3}} = \frac{6}{10}$	M1	${}^{3}C_{x}$ or ${}^{y}C_{2}$ or ${}^{2}C_{1}$ oe seen mult by $k \ge 1$ in num
	-06	M1	⁵ C ₃ seen in denom
	= 0.6	A1 🦪	Correct answer
	OR	-	
	241, 247, 261, 267, 461, 467 = 6 options	M1.	List at least 3 of 241, 247, 261, 267, 461, 467
	124 126 127 146 147 167 246 247 267 467	M1	⁵ C ₃ or list to get all 10 options in denom
	P 1 (/10		see below
	Prob = 6/10	A1	Correct answer
		Z	
(ii)	124 126 127 146 147 167	M1	Attempt at listing with at least 7 correct
	246 247 267 467	A1	All correct and no others or all 60
		B1	1, 2, 4 only seen in top row
	s 1 2 4	B1	Any two correct
	P(S=s)   6/10   3/10   1/10	B1 <b>5</b>	All correct
			l-

270. 9709_s15_ms_63 Q: 2

	(i)	.⊹ ◀						All values may be decimals or %
		***	Kitchen	Kitchen not mess	Total	B1		2 probabilities correct
		On time	1/10	1/10		B1		2 further probabilities correct
		Not on	1/2		4/5			
		time	2/5	4/10		B1	[3]	2 further probabilities correct
		Total	3/5	4/10		ы	[၁]	2 further probabilities correct
3 8	(ii)	P(not on time given kitchen mess) = $\frac{1/2}{3/5}$						A cond prob fraction seen (using corresponding combined outcomes
			= 5/6 o.e.			A1	[2]	and total) FT from their values, 3sf or better, <1, 3/5ft<1





 $271.\ 9709_s15_ms_63\ Q:\ 4$ 

(i)	$P(1 W) = 6/9 \times 3/8 + 3/9 \times 6/8$	M1	summing 2 two-factor probs (condone replacement) not ½×½ + ½×½
	$= \frac{1}{2} AG$	A1 [2]	Correct answer, fully justified
	$OR = \frac{{}^{6}C_{1} \times {}^{3}C_{1}}{{}^{9}C_{2}}$	M1	Using combinations consistent, correct format
	$= \frac{1}{2} AG$	A1	Correct answer, fully justified
(ii)	$P(\overline{W}, \overline{W}) = 3/9 \times 2/8 = 6/72 (1/12)$ $P(W, W) = 6/9 \times 5/8 = 30/72 (5/12)$	B1	Distribution table with 0,1,2 only
	$P(W,W) = 6/9 \times 5/8 = 30/72 (5/12)$ $x = 0 = 1 = 2$	B1	$P(W,W)$ or $P(\overline{W},\overline{W})$ correct
	Prob 1/12 1/2 5/12	B1 <b>√</b> [3]	$P(W,W) + P(\overline{W},\overline{W}) = 0.5$
(iii)	E(X) = 16/12 (4/3) (1.33)  isw	B1 [1]	Condone 1(.3) if correct working seen, nfww

272.  $9709_{\text{w}15}_{\text{ms}}61 \text{ Q: } 1$ 

$p = 0.76$ P(fewer than 10) = 1 - P(10, 11) $= 1 - (0.76)^{10}(0.24)^{11}C_{10} - (0.76)^{11}$ $= 1 - 0.219$ $= 0.781$	).	M1 M1 M1 A1 [4]	Any binomial term ${}^{11}C_x p^x (1-p)^{l-x}, \ 0  Any binomial term {}^{n}C_x (0.76)^x (0.24)^{n-x} 1 - P(10, 11) \text{ oe binomial expression} Correct answer$
	40		Correct answer

273. 9709_w15_ms_61 Q: 6

(i)	0.4 S 0.6 0.4 S	M1	3 pairs S (bank, log in, success oe) and F oe seen no extra bits.
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	A1	Exactly 3 pairs, must be labelled
	F	<b>A1</b> [3]	Correct diagram with all probs correct
(ii)	x         0         1         2         3           Prob         0.4         0.144         0.216	B1 M1 A1 B1 [4]	P(0) correct Multiplying two of more factors of 0.4 and 0.6 One more correct prob One more correct prob
(iii)	$E(X) = 0.24 + 2 \times 0.144 + 3 \times 0.216$ = 1.176 (1.18)	M1 A1 [2]	Using $\Sigma p_i x_i$ Correct answer





 $274.\ 9709_w15_ms_62\ Q:\ 3$ 

(i)	$\frac{1}{4}$	B1	1	
(ii)	$\left(\frac{3}{4}\right)^4 \left(\frac{1}{4}\right) = \frac{81}{1024} = 0.0791$	M1 A1	2	Expression of form $p^4(1-p)$ only, p = 1/4 or $3/4Correct answer$
(iii)	P(all diff) = $\frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} \times 4!$ = $\frac{3}{32}$ (0.0938)	M1 M1 A1	3	4! on numerator seen mult by $k \ge 1$ or $3 \times 2 \times 1$ on num oe, must be in a fraction. $4^4$ on denom or $4^3$ on denom with the $3 \times 2 \times 1$ Correct answer
	OR $1 \times \frac{3}{4} \times \frac{2}{4} \times \frac{1}{4} = \frac{3}{32}$			

 $275.\ 9709_w15_ms_62\ Q:\ 6$ 

(i) Spinner A	
1 2 3 3 B1 1	
-3 (-2) -1 0 0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
-1 0 1 2 2	
1 2 3 4 4	
	es in (i) as the top line, seen
M1 Attempt at	i) or used in part (iii) t probs seen evaluated, need at rect from their table
prob $\frac{1}{16}$ $\frac{2}{16}$ $\frac{4}{16}$ $\frac{3}{16}$ $\frac{3}{16}$ $\frac{1}{16}$ $\frac{2}{16}$ A1 3 Returns at least 4 cornect tall	
	t E(X) from their table if $\Sigma p = 1$ g $\Sigma x^2 p - [\text{their E}(X)]^2$ allow $\Sigma p \neq 1$
$= \frac{62}{16} - 1$   Variation   1 but all p'	$22x p - [\text{their } E(x)]$ allow $2p \neq 1$
(23)	
	ISWCI
OR using $\Sigma p(x-\bar{x})^2 = (9+8+4+0+3+4+18)/16$ M1	
$=\frac{46}{16}=2.875$ M1	
A1	





(iv)	P(even given +ve) $= \frac{5}{9}$	M1 A1 2	Counting their even numbers and dividing by their positive numbers Correct answer
	OR P(even given +ve) = $\frac{\left(\frac{5}{16}\right)}{\left(\frac{9}{16}\right)}$	M1	Using cond prob formula not P(E) × P(+ve) need fraction over fraction accept any of $\frac{5/16 or 6/16 or 9/16}{9/16 or 10/16 or 13/16}$
	$= \frac{5}{9}(0.556)$	A1	Correct answer

276. 9709_m22_ms_52 Q: 4

Question	Answer	Marks	Guidance
(a)	$P(46 < X < 62) = P\left(\frac{46 - 55}{6} < Z < \frac{62 - 55}{6}\right)$	М1	46 or 62, 55 and 6 substituted into ±standardisation formula once. Condone 6 ² and continuity correction ±0.5
	$= P\left(-1.5 < Z < \frac{7}{6}\right)$	В1	Both standardisation values correct, accept unsimplified
		M1	Calculating the appropriate area from stated $\Phi s$ of $z$ -values, must be probabilities.
	0.812	A1	0·8115 < p ≤ 0·812
		4	
(b)	$z = \pm 0.674$	B1	CAO, critical z-value
	$\frac{36-42}{\sigma} = -0.674$	М1	36 and 42 substituted in $\pm$ standardisation formula, no continuity correction, not $\sigma^2$ , $\sqrt{\sigma}$ , equated to a <i>z</i> -value
	$\sigma = 8.9[0]$	A1	WWW. Only dependent on M.
	20	3	

Question	Answer	Marks	Guidance
(c)	P(male < 46) = 1-their 0.9332 = 0.0668	M1	FT value from part (a) or Correct: $1 - \Phi\left(\frac{46 - 55}{6}\right)$ , condone continuity correction, $\sigma^2$ , $\sqrt{\sigma}$ , and probability found. Condone unsupported correct value stated.
	P(female < 46) = P( $Z < \frac{46 - 42}{their 8.90}$ ) [= $\Phi(0.449)$ ] = 0.6732	M1	46, 42 and <i>their</i> 4(b) $\sigma$ (or correct $\sigma$ ) substituted in ±standardisation formula, condone continuity correction, $\sigma^2$ , $\sqrt{\sigma}$ , <b>and</b> probability found Condone $\frac{4}{their}$ 8.90
	$P(both) = 0.0668 \times 0.6732$	M1	Product of <i>their</i> 2 probabilities (0 < both < 1) Not 0.25 or <i>their</i> final answer to <b>4(a)</b> used.
	0.0450 or 0.0449	A1	$0.0449 \le p \le 0.0450$
		4	





# $277.\ 9709_s22_ms_51\ Q\hbox{:}\ 5$

Question	Answer	Marks	Guidance
(a)	$P(X < 6) = P(Z < \frac{6 - 5.2}{1.5}) = P(Z < 0.5333)$	M1	6, 5.2, 1.5 substituted into ± standardisation formula, condone 1.5², continuity correction ±0.5
	0.703	A1	
		2	
(b)	$z_1 = \frac{3-\mu}{\sigma} = -1.329$ $z_2 = \frac{8-\mu}{\sigma} = 0.878$	B1	$1.328 \le z_1 \le 1.329 \text{ or}$ $-1.329 \le z_1 \le -1.328$
	$z_2 = \frac{8 - \mu}{\sigma} = 0.878$	B1	$0.877 < z_2 \le 0.878$ or $-0.878 \le z_2 < -0.877$
	Solve to find at least one unknown: $\frac{3-\mu}{\sigma} = -1.329$ $\frac{8-\mu}{\sigma} = 0.878$	M1	Use of the $\pm$ standardisation formula once with $\mu$ , $\sigma$ , a z-value (not 0.8179, 0.7910, 0.5367, 0.5753, 0.19, 0.092 etc.) and 3 or 8, condone continuity correction but not $\sigma^2$ or $\sqrt{\sigma}$
	$\frac{1}{\sigma}$ = 0.878	M1	Use either the elimination method or the substitution method to solve their two equations in $\mu$ and $\sigma$
	$\sigma = 2.27,  \mu = 6.01$	A1	$2.26 \le \sigma \le 2.27, 6.01 \le \mu \le 6.02$
		5	A ()

Question	Answer	Marks	Guidance
(c)	$[P(Z<-1)+P(Z>1)] \Phi(1)-\Phi(-1)=$	M1	Identify 1 and -1 as the appropriate z-values.
	$= 2 - 2 \Phi(1)$ $= 2 - 2 \times 0.8413$	M1	Calculating the appropriate area from stated phis of z-values which must be $\pm$ the same number
	0.3174	A1	Accept AWRT 0.317
	Number of leaves: $2000 \times 0.3174 = 634.8$ so $634$ or $635$	B1 FT	FT their 4 s.f. (or better) probability, final answer must be positive integer no approximation or rounding stated
		4	

# $278.\ 9709_s22_ms_52\ Q\hbox{:}\ 4$

Question	Answer	Marks	Guidance
(a)	$[P(1.98 < X < 2.03) = ]P(\frac{1.98 - 2.02}{0.03} < z < \frac{2.03 - 2.02}{0.03})$ $[= P(-1.333 < z < 0.333)]$	M1	Use of $\pm$ standardisation formula once with 2.02, 0.03 and either 1.98 or 2.03 substituted appropriately. Condone 0.03 ² and continuity correction $\pm$ 0.005, not $\sqrt{0.03}$ .
	$[=\Phi(0.333) - (1 - \Phi(1.333))]$ = 0.6304 + 0.9087 - 1	M1	Calculating the appropriate probability area from <i>their</i> z-values. (or $0.6304-0.09121$ or $(0.9087-0.5)+(0.6304-0.5)$ etc)
	0.539	A1	$0.539 \le z < 0.5395$ Only dependent upon 2nd M mark. If M0 scored SC <b>B1</b> for $0.539 \le z < 0.5395$ .
	•	3	
(b)	$[P(X>2.6) = \frac{134}{5000} = 0.0268]$ $[P(X<2.6) = 1 - 0.0268 =] 0.9732$	В1	$0.9732 \text{ or } \frac{4866}{5000} \text{ or } \frac{2433}{2500} \text{ seen.}$
	$\frac{2.6-2.55}{\sigma}$ =1.93	М1	Use of $\pm$ standardisation formula with 2.6 and 2.55 substituted, no $\sigma^2, \sqrt{\sigma}$ or continuity correction.
		М1	Their standardisation formula with values substituted equated to z-value which rounds to $\pm 1.93$ .
	$\sigma = 0.0259$	A1	AWRT 0.0259 or $\frac{5}{193}$ .  If M0 earned, SC <b>B1</b> for correct final answer.
		4	





279. 9709_s22_ms_52 Q: 5

Question	Answer	Marks	Guidance
(a)	$ [P(10, 11, 12) =] $ $ {}^{12}C_{10} 0.72^{10} 0.28^{2} + {}^{12}C_{11} 0.72^{11} 0.28^{1} + {}^{12}C_{12} 0.72^{12} 0.28^{0} $	М1	One term ${}^{12}C_x p^x (1-p)^{12-x}$ , for $0 < x < 12, 0 < p < 1$ .
	= 0.193725 + 0.0905726 + 0.0194084	A1	Correct expression, accept unsimplified, no terms omitted, leading to final answer.
	0.304	B1	Final answer $0.3036 .$
	Alternative method for question 5(a)		
	$ [1 - P(0,1,2,3,4,5,6,7,8,9) =] $ $ 1 - (^{12}C_0 0.72^0 0.28^{12} + ^{12}C_1 0.72^1 0.28^{11} + ^{12}C_2 0.72^2 0.28^{10} +$	M1	One term ${}^{12}C_x p^x (1-p)^{12-x}$ , for $0 < x < 12, 0 < p < 1$ .
	$^{12}C_{3}0.72^{3}0.28^{9} + ^{12}C_{4}0.72^{4}0.28^{8} + ^{12}C_{5}0.72^{5}0.28^{7} + \\ ^{12}C_{6}0.72^{6}0.28^{6} + ^{12}C_{7}0.72^{7}0.28^{5} + ^{12}C_{8}0.72^{8}0.28^{4} + \\ ^{12}C_{9}0.72^{9}0.28^{3})$	A1	Correct expression, accept unsimplified, no terms omitted, leading to final answer.
	0.304	B1	Final answer $0.3036 .$
		3	
(b)	Mean = $[0.52 \times 90 = ]46.8$ , var = $[0.52 \times 0.48 \times 90] = 22.464$	B1	46.8 and 22.464 or 22.46 seen, allow unsimplified, $(4.739 < \sigma \le 4.740 \text{ imply correct variance}).$
	$[P(X < 40) =] P\left(z < \frac{39.5 - 46.8}{\sqrt{22.464}}\right)$	М1	Substituting <i>their</i> mean and <i>their</i> variance into $\pm$ standardisation formula (any number for 39.5), not $\sigma^2$ , $\sqrt{\sigma}$ .
		M1	Using continuity correction 39.5 or 40.5 in <i>their</i> standardisation formula.
	= [P(Z < -1.540)] = 1 - 0.9382	М1	Appropriate area $\Phi$ , from final process, must be probability.
	0.0618	A1	0.06175 ≤ p ≤ 0.0618
		5	

 $280.\ 9709_s22_ms_53\ Q\hbox{:}\ 5$ 

Question	Answer	Marks	Guidance
(a)	$[P(142 < X < 205)] = P\left(\frac{142 - 170}{25} < z < \frac{205 - 170}{25}\right)$	M1	Use of $\pm$ standardisation formula once substituting 170, 25 and either 142 or 205 appropriately Condone 25 ² and continuity correction $\pm$ 0.5.
	P(-1.12 < z < 1.4)	A1	Both correct. Accept unsimplified.
	$\Phi(1.4) - (1 - \Phi(1.12)) = 0.9192 + 0.8686 - 1$	M1	Calculating the appropriate area from stated phis of z-values.
	0.788	A1	AWRT, not from wrong working
		4	
(b)	P(X > 205) = 1 - 0.9192 = 0.0808	B1 FT	Correct or FT from part 5(a).
	$(0.0808 \times 0.30 + their 0.788 \times 0.24) \times 20000$	M1	Correct or their $0.0808 \times 0.30 \times k + their \ 0.788 \times 0.24 \times k$ , k positive integer.
	[\$]4266.24	A1	4265 < income ≤ 4270, not from wrong working
		3	
(c)	$[P(Z > \frac{w-182}{20}) = 0.72]$	B1	$0.5828 \le z \le 0.583$ or $-0.583 \le z \le -0.5828$ seen.
	$\frac{20}{w - 182} = -0.583$	M1	182 and 20 substituted in $\pm$ standardisation formula, no continuity correction, not $\sigma^2$ , $\sqrt{\sigma}$ , equated to a z-value.
	w = 170	A1	170 ≤ w < 170.35
		3	





# $281.\ 9709_m21_ms_52\ \ Q:\ 3$

Question	Answer	Marks	Guidance
(a)	$P\left(\left(\frac{85-96}{18}\right) < z < \left(\frac{100-96}{18}\right)\right)$	M1	Use of $\pm$ standardisation formula once with appropriate values substituted, no continuity correction, not $\sigma^2$ or $\sqrt{\sigma}$ .
	$P(-0.6111 < z < 0.2222)$ $= \Phi(0.2222) + \Phi(0.6111) - 1$ $= 0.5879 + 0.7294 - 1$	M1	Appropriate area $\Phi$ , from final process, must be probability. Use of $(1-z)$ implies M0.
	0.317	A1	Final answer which rounds to 0·317.
		3	

Question	Answer	Marks	Guidance
(b)	$z = \pm 1.175$	B1	$1.17 \le z \le 1.18 \text{ or } -1.18 \le z \le -1.17$
	$-1.175 = \frac{t - 96}{18}$	M1	An equation using $\pm$ standardisation formula with a $z$ -value, condone $\sigma^2$ , $\sqrt{\sigma}$ or continuity correction. E.g. equating to $0.88$ , $0.12$ , $0.8106$ , $0.1894$ , $0.5478$ , $0.4522$ , $\pm 0.175$ or $\pm 2.175$ implies M0.
	74·85 or 74·9	A1	$74.85 \leqslant t \leqslant 74.9$
		3	. 0

#### $282.\ 9709_m21_ms_52\ Q\hbox{:}\ 7$

Question	Answer	Marks	Guidance
(a)(i)	$\left[\frac{104+31}{400} = \frac{135}{400}, \frac{27}{80}, 0.3375\right]$	B1	Evaluated, exact value.
	4	1	
(a)(ii)	Method 1	O.	
	$P(M) = \frac{180}{400}$ , 0.45 $P(S) = \frac{135}{400}$ , 0.3375 $P(M \cap S) = \frac{31}{400}$ , 0.0775	М1	Their $P(M) \times their P(S)$ seen, accept unsimplified.
	$\frac{180}{400} \times \frac{135}{400} = \frac{243}{1600}, 0.151875 \neq \frac{31}{400} \text{ so NOT independent}$		
		A1	$P(M)$ , $P(S)$ and $P(M \cap S)$ notation seen, numerical comparison and correct conclusion, WWW.
	Method 2		
	$P(M \cap S) = \frac{31}{400} P(S) = \frac{135}{400} P(M) = \frac{180}{400}$	M1	$[P(M S)=]\frac{their P(M\cap S)}{their P(S)}$ (oe) seen, accept unsimplified.
	$P(M S) = \frac{\frac{31}{400}}{\frac{135}{400}} = \frac{31}{135} \cdot 0.2296 \neq \frac{180}{400} \text{ so NOT independent}$		
		A1	$P(M)$ , $P(S)$ and $P(M \cap S)$ notation seen, numerical comparison and correct conclusion, WWW.
		2	





Question	Answer	Marks	Guidance		
(b)(i)	Method 1 [1 – P(0,1,2)]				
	$= 1 - ({}^{10}C_0  0.3^0  0.7^{10} + {}^{10}C_1  0.3^1  0.7^9 + {}^{10}C_2  0.3^2  0.7^8)$	M1	$^{10}C_x p^x (1-p)^{10 \cdot x}$ for $0 < x < 10, 0 < p < 1$ , any $p$ .		
	= 1 - (0.028248 + 0.121061 + 0.233474)	A1	Correct expression, accept unsimplified, condone omission of final bracket, condone recovery from poor notation.		
	= 0.617	A1	Accept $0.61715 \le p \le 0.61722$ , WWW.		
	Method 2 [P(3,4,5,6,7,8,9,10) =]				
	${}^{10}C_3  0 \cdot 3^3  0 \cdot 7^7 + {}^{10}C_4  0 \cdot 3^4  0 \cdot 7^6 + {}^{10}C_5  0 \cdot 3^5  0 \cdot 7^5 \\ + {}^{10}C_6  0 \cdot 3^6  0 \cdot 7^4 + {}^{10}C_7  0 \cdot 3^7  0 \cdot 7^3 + {}^{10}C_8  0 \cdot 3^8  0 \cdot 7^2 \\ + {}^{10}C_9  0 \cdot 3^9  0 \cdot 7^1 + {}^{10}C_{10}  0 \cdot 3^{10}  0 \cdot 7^0$	M1	$^{10}C_x p^x (1-p)^{10-x}$ for $0 < x < 10$ , $0 , any p.$		
		A1	Correct unsimplified expression.		
	= 0.617	A1	Accept 0·61715 ≤ <i>p</i> ≤ 0·61722, WWW.		
		3			

Question	Answer	Marks	Guidance
(b)(ii)	[p = $0.3$ ] Mean = $0.3 \times 90 = 27$ ; variance = $0.3 \times 90 \times 0.7 = 18.9$	В1	Correct mean and variance, allow unsimplified. Condone $\sigma = 4.347$ evaluated.
	$P(X < 32) = P\left(z < \frac{31.5 - 27}{\sqrt{18.9}}\right)$	M1	Substituting their $\mu$ and $\sigma$ (not $\sigma^2$ , $\sqrt{\sigma}$ ) into the ±standardising formula with a numerical value for '31.5'.
		M1	Using either 31.5 or 32.5 within a $\pm$ standardising formula with numerical values for <i>their</i> $\mu$ and $\sigma$ (condone $\sigma^2$ , $\sqrt{\sigma}$ ).
	$=\Phi(1.035)$	M1	Appropriate area $\Phi$ , from standardisation formula $P(z<)$ in final solution, must be probability.
	= 0.850	A1	Allow $0.8495 , final answer WWW.$
		5	

 $283.\ 9709_s21_ms_51\ \ Q:\ 2$ 

Question	Answer	Marks	Guidance
	$ \left[ P\left( \left( \frac{25.2 - (25.5 + 0.50)}{0.4} \right) < z < \left( \frac{25.2 - (25.2 - 0.50)}{0.4} \right) \right) \right] \\ = P\left( -\frac{0.5}{0.4} < z < \frac{0.5}{0.4} \right) $	M1	Use of $\pm$ Standardisation formula once; no continuity correction, $\sigma^2, \sqrt{\sigma}$
	$\left[=2\Phi(1.25)-1\right]$	Al	For AWRT 0.8944 SOI
	$=2\times0.8944-1$	M1	Appropriate area $2\Phi-1$ OE, from final process, must be probability
	0.7888	A1	Accept AWRT 0.789
	Number of rods = 0.7888×500 = 394 or 395	B1FT	Correct or FT <i>their</i> 4SF (or better) probability, final answer must be positive integer, not 394.0 or 395.0, no approximation/rounding stated, only 1 answer
		5	





284. 9709_s21_ms_51 Q: 6

Question	Answer	Marks	Guidance		
(a)	$1 - P(10, 11, 12) = 1 - (^{12}C_{10}0.6^{10}0.4^{2} + ^{12}C_{11}0.6^{11}0.4^{1} + ^{12}C_{12}0.6^{12}0.4^{0})$	M1	One term: ${}^{12}C_x p^x (1-p)^{12 \cdot x}$ for $0 < x < 12$ , any p allowed.		
	[= 1 - (0.063852 + 0.017414 + 0.0021768)]	A1	Correct unsimplified expression, or better.		
	[1 - 0.083443] = 0.917	A1	AWRT		
	Alternative method for Question 6(a)				
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	M1	One term: ${}^{12}C_x p^x (1-p)^{12-x}$ for $0 < x < 12$ , any p allowed.		
	$ \begin{bmatrix} 0.4 \\ [= 0.000016777 + 0.00030199 + 0.0024914 + 0.012457 + 0.042043 + \\ 0.10090 + 0.17658 + 0.22703 + 0.21284 + 0.14189] \end{bmatrix} $	A1	Correct unsimplified expression with at least the first two and last terms		
	0.917	A1	WWW, AWRT		
		3			

Question	Answer	Marks	Guidance
(b)	[Mean =] 0.6 ×150 [= 90]; [Variance =] 0.6 ×150 × 0.4 [= 36]	B1	Correct mean and variance. Accept evaluated or unsimplified
	$P(X < 81) = P\left(Z < \frac{80.5 - 90}{6}\right)$	M1	Substituting their mean and variance into $\pm$ standardisation formula (with a numerical value for 80.5), allow $\sigma^2$ , $\sqrt{\sigma}$ , but not $\mu \pm 0.5$
		Ml	Using continuity correction 80.5 or 81.5
	$\Phi(-1.5833) = 1 - 0.9433$	M1	Appropriate area $\Phi$ , from final process, must be probability
	0.0567	A1	AWRT
		5	
(c)	np = 90, nq = 60 both greater than 5	В1	At least nq evaluated and statement >5 required
		1	

 $285.\ 9709_s21_ms_52\ Q\hbox{:}\ 2$ 

Question	Answer	Marks	Guidance
	$P(X > 1.1) = \frac{72}{2000} (= 0.036)$ $z = \pm 1.798$	В1	$1.79 < z \le 1.80, -1.80 \le z < -1.79$ seen
	$\frac{1.1-1.04}{\sigma} = 1.798$	B1	1.1 and 1.04 substituted in $\pm$ standardisation formula, allow continuity correction, not $\sigma^2$ or $\sqrt{\sigma}$
	$\left[\frac{0.06}{\sigma} = 1.798\right]$	M1	Equate <i>their</i> $\pm$ standardisation formula to a <i>z</i> -value and to solve for the appropriate area leading to final answer (expect $\sigma < 0.5$ ). $\left(\text{Accept} \pm \frac{0.06}{\sigma} = z - \text{value}\right)$
	$\sigma = 0.0334$	A1	$0.03335 \le \sigma \le 0.0334$ . At least 3 3s.f.
		4	





 $286.\ 9709_s21_ms_52\ Q\hbox{:}\ 5$ 

Question	Answer	Marks	Guidance		
(a)	$[(0.7)^3 =]0.343$	В1	Evaluated WWW		
	Alternative method for Question 5(a)				
	$[(0.15)^3 + {}^3C_1(0.15)^2(0.55) + {}^3C_2(0.15)(0.55)^2 + (0.55)^3 =] 0.343$	B1	Evaluated WWW		
		1			
(b)	$ \begin{bmatrix} 1 - (0.85^9 + {}^9C_10.15^10.85^8 + {}^9C_20.15^20.85^7) \\ [1 - (0.231617 + 0.367862 + 0.259667)] \end{bmatrix} $	M1	One term: ${}^{9}C_{x}p^{x}(1-p)^{9-x}$ for $0 < x < 9$ , any $0$		
		A1	Correct expression, accept unsimplified.		
	0.141	A1	0.1408   ans   0.141, award at most accurate value.		
	Alternative method for Question 5(b)				
	${}^{9}C_{3}0.15^{5}0.85^{6} + {}^{9}C_{4}0.15^{4}0.85^{5} + {}^{9}C_{5}0.15^{5}0.85^{4} + {}^{9}C_{6}0.15^{6}0.85^{3} + {}^{9}C_{7}0.15^{7}0.85^{2} + {}^{9}C_{8}0.15^{8}0.85 + 0.15^{9}$	M1	One term: ${}^{9}C_{x}p^{x}(1-p)^{9-x}$ for $0 < x < 9$ , any $0$		
		A1	Correct expression, accept unsimplified.		
	0.141	A1	0.1408   ans   0.141, award at most accurate value.		
		3			

Question	Answer	Marks	Guidance
(c)	Mean = $[60 \times 0.15 =]9$ Variance = $[60 \times 0.15 \times 0.85 =]7.65$	В1	Correct mean and variance, allow unsimplified. (2.765 $\leq \sigma \leq$ 2.77 imply correct variance)
	$[(X \ge 12) =] P\left(Z > \frac{11.5 - 9}{\sqrt{7.65}}\right)$	M1	Substituting <i>their</i> mean and variance into $\pm$ standardisation formula (any number for 11.5), not $\sigma^2$ or $\sqrt{\sigma}$
		M1	Using continuity correction 11.5 or 12.5 in <i>their</i> standardisation formula.
	$1 - \Phi(0.9039) = 1 - 0.8169$	M1	Appropriate area $\Phi$ , from final process, must be probability.
	0.183	A1	Final AWRT
		5	





287. 9709_s21_ms_53 Q: 5

Question	Answer	Marks	Guidance
(a)	$z_1 = \frac{4 - \mu}{\delta} = -1.378$	B1	$1.378 \leqslant z_1 \le 1.379 \text{ or } -1.379 \leqslant z_1 \leqslant -1.378$
	$z_2 = \frac{10 - \mu}{\sigma} = 0.842$	В1	$0.841 \leqslant z_2 \leqslant 0.842 \text{ or } -0.842 \leqslant z_2 \leqslant -0.841$
	Solve to find at least one unknown: $\frac{4-\mu}{\sigma} = -1.378$	M1	Use of $\pm$ standardisation formula once with $\mu$ , $\sigma$ , a z-value and 4 or 10, allow continuity correction, not $\sigma^2$ or $\sqrt{\sigma}$
	$\frac{10-\mu}{\sigma} = 0.842$	M1	Use either the elimination method or the substitution method to solve two equations in $\mu$ and $\sigma$ .
	$\sigma = 2.70  \mu = 7.72$	A1	$2.70 \leqslant \sigma \leqslant 2.71 \ 7.72 \leqslant \mu \leqslant 7.73$
		5	
(b)	$\Phi(2) - \Phi(-2) = 2\Phi(2) - 1$	М1	Identifying 2 and –2 as the appropriate z-values
	2×their 0.9772 – 1	B1	Calculating the appropriate area from stated phis of z-values which must be $\pm$ the same number
	0.9544 or 0.9545	A1	Accept AWRT 0.954
	0.9544 × 800 = 763.52 763 or 764	B1 FT	FT their 4SF (or better) probability, final answer must be positive integer
		4	

 $288.\ 9709_s21_ms_53\ Q:\ 7$ 

9709/53

# Cambridge International AS & A Level – Mark Scheme PUBLISHED

May/June 2021

Question	Answer	Marks	Guidance
(a)(i)	$\frac{40}{800}$ or $\frac{1}{20}$ or 0.05	В1	
		1	
(a)(ii)	177 223+177+40	M1	Their 223 + 177 + 40 seen as denominator of fraction in the final answer, accept unsimplified
	$\frac{177}{440}$ or 0.402	A1	CAO
	Alternative method for Question 7(a)(ii)		
	$P(G \mid S) = \frac{P(G \cap S)}{P(S)} = \frac{\frac{177}{800}}{\frac{223+177+40}{800}} = \frac{\frac{177}{800}}{\frac{440}{800}} = \frac{\frac{177}{800}}{\frac{11}{20} \text{ or } 0.55}$	М1	Their P(S) seen as denominator of fraction in the final answer, accept unsimplified
	$\frac{177}{440}$ or 0.402	A1	CAO
		2	
7(b)(i)	$\begin{array}{l} P(0,1,2) = \\ {}^{10}C_{0}\left(0.35\right)^{0}\left(0.65\right)^{10} + {}^{10}C_{1}\left(0.35\right)^{1}\left(0.65\right)^{9} + {}^{10}C_{2}\left(0.35\right)^{2}\left(0.65\right)^{8} \end{array}$	M1	One term: ${}^{10}C_x p^x (1-p)^{10-x}$ for $0 < x < 10$ , any $0$
	0.013463 + 0.072492 + 0.17565	A1	Correct unsimplified expression, or better
	0.262	A1	
		3	

© UCLES 2021 Page 13 of 14





Question	Answer	Marks	Guidance
(b)(ii)	Mean = $120 \times 0.35$ [= 42] Variance = $120 \times 0.35 \times 0.65$ [= 27.3]	B1	Correct mean and variance seen, allow unsimplified
	$P(X>32) = P(Z > \frac{32.5 - 42}{\sqrt{27.3}}) = P(Z > -1.818)$	M1	Substituting <i>their</i> mean and variance into $\pm$ standardisation formula (any number), condone $\sigma^2$ or $\sqrt{\sigma}$
		M1	Using continuity correction 31.5 or 32.5
	$\Phi(1.818)$	M1	Appropriate area $\Phi$ , from final process, must be probability
	0.966	A1	$0.965 \le p \le 0.966$
		5	

289.  $9709_{w21}_{ms_51}$  Q: 7

Question	Answer	Marks	Guidance
(a)(i)	$P(X > 142) = P\left(Z > \frac{142 - 125}{24}\right)$	М1	Substitution of correct values into the $\pm$ Standardisation formula, allow continuity correction, not $\sigma^2$ , $\sqrt{\sigma}$ .
	[=P(Z>0.7083)=]1-0.7604	M1	Appropriate numerical area $\Phi$ , from final process, must be probability, expect $p < 0.5$ .
	0.2396	A1	$0.239 \le p \le 0.240$ to at least 3sf.
	<i>Their</i> 0.2396 × 365 [= 87.454]	M1	FT their 4sf (or better) probability.
	87 or 88	A1 FT	Final answer must be positive integer, no indication of approximation/rounding, only dependent on previous <b>M</b> mark.  SC B1 FT for <i>their</i> 3sf probability × 365 = integer value, condone 0.24 used.
		5	
(a)(ii)	$P(0, 1) = 0.7604^{10} + {}^{10}C_1 \times 0.2396^1 \times 0.7604^9$ [= 0.064628 + 0.20364]	M1	One term: ${}^{10}C_x p^x (1-p)^{10-x}$ for $0 < x < 10$ , any $p$ .
	[-0.004028 + 0.20304]	A1 FT	Correct unsimplified expression using <i>their</i> probability to at least 3sf from (a)(i) or correct.
	0.268	A1	AWRT, WWW.
		3	
(b)	$z = \pm 1.282$	B1	Correct value only, critical value.
	$\frac{t - 125}{24} = -1.282$	М1	Use of $\pm$ Standardisation formula with correct values substituted, allow continuity correction, $\sigma^2$ , $\forall \sigma$ , to form an equation with a z-value and not probability.
	t = 94.2	A1	AWRT, condone AWRT 94.3. Not dependent on <b>B</b> mark.
		3	





 $290.\ 9709_w21_ms_52\ Q:\ 6$ 

Question	Answer	Marks	Guidance
(a)	$ [P(X > 28.6) =] P(Z > \frac{28.6 - 32.2}{9.6}) $ $ [= P(Z > -0.375)] $	M1	28.6, 32.2 and 9.6 substituted appropriately in $\pm$ Standardisation formula once, allow continuity correction of $\pm$ 0.05, no $\sigma^2$ , $\sqrt{\sigma}$ .
	$[\Phi(their  0.375) = ] their  0.6462$	M1	Appropriate numerical area, from final process, must be probability, expect > 0.5.
	0.646	A1	AWRT
		3	
(b)	$z = \pm 0.842$	B1	$0.841 < z \le 0.842$ or $-0.842 \le z < -0.841$ seen.
	$\frac{t - 32.2}{9.6} = 0.842$	М1	Substituting 32.2 and 9.6 into $\pm$ standardisation formula, no continuity correction, allow $\sigma^2$ , $\sqrt{\sigma}$ , must be equated to a z-value.
	t = 40.3	A1	$40.28 \le t \le 40.3$ WWW
		3	

Question	Answer	Marks	Guidance
(c)	$P\left(-\frac{15}{9.6} < Z < \frac{15}{9.6}\right)$ $P(-1.5625 < Z < 1.5625)$	M1	Identifying at least one of $\frac{15}{9.6}$ and $-\frac{15}{9.6}$ as the appropriate z-values or substituting <i>their</i> (32.2 ± 15) into ± Standardisation formula once, no continuity correction, $\sigma^2$ nor $\sqrt{\sigma}$ . Condone ±1.563 for M1.
	$[2 \Phi(\frac{15}{9.6}) - 1]$ $= 2 \times 0.9409 - 1$		$p = 0.941$ AWRT SOI  Appropriate area $2\Phi - 1$ oe, (eg $1 - 2 \times 0.0591$ , $2 \times (0.9409 - 0.5)$ or $0.9409 - 0.0591$ ), from final process, must be probability $> 0.5$ .
	0.882	A1 4	

 $291.\ 9709_w21_ms_53\ Q:\ 4$ 

Question	Answer	Marks	Guidance
(a)	$P(X > 43.2) = P(Z > \frac{43.2 - 41.2}{3.6}) = P(Z > 0.5556)$	М1	Use of $\pm$ Standardisation formula once, allow continuity correction, not $\sigma^2, \sqrt{\sigma}$ .
	$1 - \Phi(0.5556) = 1 - 0.7108$	M1	Appropriate area $\Phi$ , from final process, must be probability.
	0.289	A1	AWRT
	**	3	
(b)	Probability = $1 - their$ (a) = $1 - 0.2892 = 0.7108$	B1FT	1 – their (a) or correct.
	0.7108 × 365 = 259.4 259, 260	B1FT	FT <i>their</i> 4SF (or better) probability, final answer must be positive integer.
		2	
(c)	$z = \pm 1.645$	B1	CAO, critical z value.
	$\frac{t - 41.2}{3.6} = -1.645$	М1	Use of ±standardisation formula with $\mu$ , $\sigma$ equated to a z-value, no continuity correction, allow $\sigma^2$ , $\sqrt{\sigma}$ .
	t = 35.3	A1	
		3	





 $292.\ 9709_m20_ms_52\ Q:\ 3$ 

Question	Answer	Marks	Guidance
(a)	$P(X > 87) = P\left(Z > \frac{87 - 82}{\sigma}\right) = 0.22$	M1	Using $\pm$ standardisation formula, not $\sigma^2$ , not $\sqrt{\sigma}$ , no continuity correction
	$P\left(Z < \frac{5}{\sigma}\right) = 0.78$ $\left(\frac{5}{\sigma}\right) = 0.772$	В1	AWRT ±0.772 seen B0 for ±0.228
	$\sigma = 6.48$	A1	
		3	
(b)	$P\left(-\frac{4}{\sigma} < Z < \frac{4}{\sigma}\right) = P\left(-0.6176 < Z < 0.6176\right)$	M1	Using $\pm 4$ used within a standardisation formula (SOI), allow $\sigma^2$ , $\sqrt{\sigma}$ and continuity correction
		M1	Standardisation formula applied to <b>both</b> <i>their</i> $\pm 4$
	$\Phi = 0.7317$ Prob = $2\Phi - 1 = 2(0.7317) - 1$	М1	Correct area $2\Phi-1$ oe linked to final solution
	= 0.463	A1	
		4	40

 $293.\ 9709_m20_ms_52\ Q:\ 5$ 

Question	Answer	Marks	Guidance
(a)	$1 - P(6, 7, 8)$ = 1 - (\(^8C_6  0.7^6  0.3^2 + ^8C_7  0.7^7  0.3^1 + 0.7^8\)	M1	One term ${}^{8}C_{x} p^{x} (1-p)^{8-x},  0$
	= 1 - 0.55177	A1	Correct unsimplified expression, or better
	= 0.448	A1	
	Alternative method for question 5(a)		
	$ \begin{array}{ c c c c c c }\hline P(0,1,2,3,4,5) \\ = 0.3^8 + {}^8C_10.7^10.3^7 + {}^8C_20.7^20.3^6 + {}^8C_30.7^30.3^5 + \\ {}^8C_40.7^40.3^4 + {}^8C_50.7^50.3^3 \\ \end{array} $	M1	One term ${}^{8}C_{x} p^{x} (1-p)^{8-x}, 0$
		A1	Correct unsimplified expression, or better
	= 0.448	A1	
		3	
(b)	Mean = $120 \times 0.7 = 84$ Var = $120 \times 0.7 \times 0.3 = 25.2$	В1	Correct mean and variance, allow unsimplified
	P( more than 75) = P $\left(z > \frac{75.5 - 84}{\sqrt{25.2}}\right)$	M1	Substituting their $\mu$ and $\sigma$ into the $\pm$ standardising formula (any number), not $\sqrt{\sigma}$
		M1	Using continuity correction 75.5 or 74.5
	P(z>-1.693)	M1	Appropriate area $\Phi$ , from final process, must be a probability
	= 0.955	A1	Allow $0.9545$
		5	





 $294.\ 9709_s20_ms_51\ Q:\ 6$ 

Question	Answer	Marks
(a)	$P\left(\frac{50-54}{6.1} < z < \frac{60-54}{6.1}\right) = P\left(-0.6557 < Z < 0.9836\right)$	M1
	Both values correct	A1
	$\Phi$ (0.9836) $-\Phi$ (-0.6557) = $\Phi$ (0.9836) $+\Phi$ (0.6557) $-1$ = 0.8375 $+$ 0.7441 $-1$ (Correct area)	M1
	0.582	A1
		4

Question	Answer	Marks
(b)	$\frac{45-\mu}{\sigma} = -0.994$	В1
	$\frac{56-\mu}{\sigma} = 1.372$	B1
	One appropriate standardisation equation with $\mu$ , $\sigma$ , z-value (not probability) and 45 or 56.	M1
	$11 = 2.366 \ \sigma$ (M1 for correct algebraic elimination of $\mu$ or $\sigma$ from <i>their</i> two simultaneous equations to form an equation in one variable)	M1
	$\sigma$ = 4.65, $\mu$ = 49.6	A1
		5

 $295.\ 9709_s20_ms_52\ Q\hbox{:}\ 4$ 

Question	Answer	Marks
(a)	$P(X < 25) = P(z < \frac{25 - 40}{12}) = P(z < -1.25)P(X < 25) = P(z < -1.25)P(X $	M1
	1-0.8944	M1
	0.106	A1
		3
(b)	0.8944 divided by 3 (M1 for 1 - their (a) divided by 3)	M1
	0.298 AG	A1
	**	2
(c)	0.2981  gives  z = 0.53	B1
	$\frac{h-40}{12} = 0.53$	M1
	h = 46.4	A1
		3





 $296.\ 9709_s20_ms_52\ Q:\ 7$ 

Question	Answer	Marks
(a)	$ \begin{vmatrix} 1 - P(10, 11, 12) \\ = 1 - \begin{bmatrix} 1^{12}C_{10}0.72^{10}0.28^{2} + {}^{12}C_{11}0.72^{11}0.28^{1} + 0.72^{12} \end{bmatrix} $	M1
	1 - (0.19372 + 0.09057 + 0.01941)	A1
	0.696	A1
		3
(b)	$0.28^3 \times 0.72 = 0.0158$	B1
		1

Question	Answer	Marks
(c)	Mean = $100 \times 0.72 = 72$ Var = $100 \times 0.72 \times 0.28 = 20.16$	M1
	P(less than 64) = P $\left(z < \frac{63.5 - 72}{\sqrt{20.16}}\right)$ (M1 for substituting their $\mu$ and $\sigma$ into $\pm$ standardisation formula with a numerical value for '63.5')	M1
	Using either 63.5 or 64.5 within a ±standardisation formula	M1
	Appropriate area $\Phi$ , from standardisation formula $P(z<)$ in final solution $= P(z<-1.893)$	M1
	0.0292	A1
		5

 $297.\ 9709_s20_ms_53\ Q{:}\ 3$ 

Question	Answer	Marks
(a)	$P(X < 21) = P\left(z < \frac{21 - 15.8}{4.2}\right) = \Phi(1.238)$	M1
	0.892	A1
		2
(b)	$z = \pm 0.674$	B1
	$\frac{k-15.8}{4.2} = 0.674$	M1
	18.6	A1
	**	3





 $298.\ 9709_s20_ms_53\ Q{:}\ 5$ 

Question	Answer	Marks
(a)	$\frac{1}{\frac{1}{4}} = 4$	В1
		1
(b)	$\frac{9}{64}$ (= 0.141)	В1
		1
(c)	$P(X < 6) = 1 - \left(\frac{3}{4}\right)^5$	M1
	(FT their probability/mean from part (a))	
	0.763	A1
		2
(d)	Mean = $80 \times 0.25 = 20$ Var = $80 \times 0.25 \times 0.75 = 15$	М1
	P(more than 25) = P $\left(z > \frac{25.5 - 20}{\sqrt{15}}\right)$	M1
	P(z > 1.42)	М1
	1-0.9222	М1
	0.0778	A1
		5

 $299.\ 9709_w20_ms_51\ Q\hbox{:}\ 5$ 

	The state of the s		
(a)	$P(X > 4.2) = P(z > \frac{4.2 - 3.5}{0.9})$ $= P(z > 0.7778)$	M1	Using $\pm$ standardisation formula, no $\sqrt{\sigma}$ or $\sigma^2$ , continuity correction
	1 – 0·7818	M1	Appropriate area $\Phi$ , from standardisation formula P(z>) in final solution
	0.218	A1	
	0.0	3	
(b)	z = -1.282	В1	±1.282 seen (critical value)
	$\frac{t - 3.5}{0.9} = -1.282$	M1	An equation using $\pm$ standardisation formula with a z-value, condone $\sqrt{\sigma}$ , $\sigma^2$ and continuity correction
	t = 2.35	A1	AWRT, only dependent on M mark
		3	





Question	Answer	Marks	Guidance	
(c)	P(2.8 < X < 4.2) = $1 - 2 \times their 5(\mathbf{a})$ = $2(1 - their 5(\mathbf{a})) - 1$ = $2(0.5 - their 5(\mathbf{a}))$ = $0.5636$	B1 FT	FT from their <b>5(a)</b> < 0.5 or correct Accept unevaluated probability OE Accept 0-564	
	Number of days = $365 \times 0.5636 = 205.7$	M1	365 × their p	
	So, 205 (days)	A1 FT	Accept 205 or 206, not 205·0 or 206·0 no approximation/rounding stated FT must be an integer value	
	Alternative method for question 5(c)			
	$P\left(\frac{2.8-3.5}{0.9} < z < \frac{4.2-3.5}{0.9}\right)$ $= \Phi(0.7778) - (1-\Phi0.7778)$ $= 0.7818 - (1-0.7818)$ $= 0.5636$	В1	$0.5635  OE$	
	Number of days = $365 \times 0.5636 = 205.7$	M1	365 × their p	
	So, 205 (days)	A1 FT	Accept 205 or 206, not 205.0 or 206.0 no approximation/rounding stated FT must be an integer value	
		3		

 $300.\ 9709_w20_ms_52\ Q:\ 3$ 

Question	Answer	Marks	Guidance
(a)	$P(X > 11.3) = P(z > \frac{11.3 - 10.1}{1.3}) = P(z > 0.9231)$	M1	Using $\pm$ standardisation formula, no $\sqrt{\sigma}$ or $\sigma^2$ , continuity correction
	1 – 0.822	M1	Appropriate area $\Phi$ , from standardisation formula $P(z>\dots)$ in final solution
	0-178	A1	0.1779
		3	
(b)	z = -0.674	В1	±0.674 seen (critical value)
	$\frac{t - 10.1}{1.3} = -0.674$	M1	An equation using $\pm$ standardisation formula with a z-value, condone $\sqrt{\sigma}$ or $\sigma^2$ , continuity correction.
	t = 9.22	A1	AWRT. Only dependent on M1
		3	





Question	Answer	Marks	Guidance	
(c)	P(8.9 < X < 11.3) = 1 - 2 × their 3(a) = $2(1 - their 3(a)) - 1$ = $2(0.5 - their 3(a))$ = 0.644	B1 FT	FT from <i>their</i> <b>3(a)</b> < 0·5 or correct, accept unevaluated probability OE	
	Number of days = $90 \times 0.644$ = $57.96$	M1	$90 \times their \ p \ seen, \ 0$	
	So 57 (days)	A1 FT	Accept 57 or 58, not 57·0 or 58·0, no approximation/rounding stated FT must be an integer value	
	Alternative method for question 3(c)			
	$P\left(\frac{8 \cdot 9 - 10 \cdot 1}{1 \cdot 3} < z < \frac{11.3 - 10.1}{1 \cdot 3}\right)$ $= \Phi(0 \cdot 9231) - (1 - \Phi(0 \cdot 9231)) \text{ oe}$ $= 0.822 - (1 - 0.822)$ $= 0.644$	B1	Accept unevaluated probability	
	Number of days = $90 \times 0.644$ = $57.96$	M1	$90 \times their \ p \ seen, \ 0$	
	So 57 (days)	A1 FT	Accept 57 or 58, not 57·0 or 58·0, no approximation/rounding stated FT must be an integer value	
		3	. 0	

 $301.\ 9709_w20_ms_53\ Q\!:\, 1$ 

Question	Answer	Marks	Guidance
(a)	$P(56 < X < 66) = P\left(\frac{56 - 62}{5} < z < \frac{66 - 62}{5}\right)$ $= P(-1.2 < z < 0.8)$	M1	Using $\pm$ standardisation formula at least once, no $\sqrt{\sigma}$ or $\sigma^2$ , allow continuity correction
	$\Phi(0.8) + \Phi(1.2) - 1$ = 0.7881 + 0.8849 - 1	M1	Appropriate area $\Phi$ , from standardisation formula in final solution
	0.673	A1	
		3	
(b)	z = 1.127	В1	$\pm (1.126 - 1.127)$ seen, 4 sf or more
	$\frac{60t - 62}{5} = 1.127$ $60t = 5.635 + 62 = 67.635$	M1	z-value = $\pm \frac{(60t - 62)}{5}$ condone z-value = $\pm \frac{(t - 62)}{5}$ no continuity correction, condone $\sqrt{\sigma}$ or $\sigma^2$
	t = 1.13	A1	CAO
		3	





302.  $9709_{\text{w}}20_{\text{ms}}53$  Q: 4

Question	Answer	Marks	Guidance
(a)	$0.65^7 + {}^7C_1 \ 0.65^6 \ 0.35^1 + {}^7C_2 \ 0.65^5 \ 0.35^2$	М1	Binomial term of form $^7\mathrm{C_x}\ p^x \left(1-p\right)^{7-x}$ , $0 , any p, x \neq 0, 7$
	0.049022 + 0.184776 + 0.29848	A1	Correct unsimplified answer
	0.532	A1	
		3	
(b)	Mean = $142 \times 0.35 = 49.7$ Variance = $142 \times 0.35 \times 0.65 = 32.305$	В1	Correct unsimplified $np$ and $npq$ (condone $\sigma = 5.684$ evaluated)
	$P(X > 40) = P(z > \frac{40.5 - 49.7}{\sqrt{32.305}})$	M1	Substituting their $\mu$ and $\sigma$ (no $\sqrt{\sigma}$ or $\sigma^2$ ) into $\pm$ standardisation formula with a numerical value for '40.5'
	P(z > -1.619)	M1	Using either 40.5 or 39.5 within a ±standardisation formula
		M1	Appropriate area $\Phi$ , from standardisation formula $P(z >)$ in final solution, must be probability
	0.947	A1	Correct final answer
		5	

 $303.\ 9709_m19_ms_62\ Q:\ 3$ 

Question	Answer	Marks	Guidance
(i)	$P(X < 132) = P\left(Z < \frac{132 - 140}{12}\right) = P(Z < -0.6667)$	M1	Using $\pm$ standardisation formula, no continuity correction, not $\sigma^2$ or $\sqrt{\sigma}$
	= 1 - 0.7477	M1	Appropriate area $\Phi$ from standardisation formula $P(z \le)$ in final solution
	= 0.252 awrt	A1	Condone linear interpolation = 0.25243
		3	
(ii)	P(time>k) = 0.675, z = -0.454	B1	±0.454 seen
	$\frac{k - 140}{12} = -0.454$	M1	An equation using the standardisation formula with a z-value (not $1-z$ ), condone $\sigma^2$ or $\sqrt{\sigma}$
	k = 135, 134.6, 134.55	A1	B0M1A1 max from -0.45
	0.0	3	





#### $304.\ 9709_m19_ms_62\ Q:\ 6$

Question	Answer	Marks	Guidance
(i)	$P(4, 5, 6) = {}^{6}C_{4} \cdot 0.35^{4} \cdot 0.65^{2} + {}^{6}C_{5} \cdot 0.35^{5} \cdot 0.65^{1} + 0.35^{6}$	M1	Binomial term of form ${}^6\mathrm{C}_x p^x (1-p)^{6-x} \ 0  any p, x \neq 6,0$
		A1	Correct unsimplified answer
	= 0.117	A1	
		3	
(ii)	1-0.65" > 0.95 0.65" < 0.05	M1	Equation or inequality involving '0.65" or 0.35" and '0.95 or 0.05'
	$n > \frac{\log 0.05}{\log 0.65} = 6.95$	M1	Attempt to solve <i>their</i> exponential equation using logs or Trial and Error.
	n=7	A1	CAO
		3	
(iii)	Mean = 0.35×100 = 35 Variance = 0.35×0.65×100 = 22.75	B1	Correct unsimplified np and npq,
	$P\left(z > \frac{39.5 - 35}{\sqrt{22.75}}\right) = P(z > 0.943)$	M1	Substituting their $\mu$ and $\sigma$ (condone $\sigma^2$ ) into the $\pm$ Standardisation Formula with a numerical value for '39.5'.
		M1	Using continuity correction 39.5 or 40.5
	= 1-0.8272	M1	Appropriate area $\Phi$ from standardisation formula P(z>) in final solution, (>0.5 if z is -ve, <0.5 if z is +ve)
	= 0.173	A1	Final answer
		5	70

# $305.\ 9709_s19_ms_61\ Q\hbox{:}\ 5$

Question	Answer	Marks	Guidance
(i)	(P > 12) = P(13, 14, 15)	M1	Binomial term of form ${}^{15}C_x p^x (1-p)^{15-x} \ 0$
	$= {}^{15}C_{13}(0.65)^{13}(0.35)^2 + {}^{15}C_{14}(0.65)^{14}(0.35)^1 + (0.65)^{15}$	A1	Correct unsimplified answer
	= 0.0617	A1	SC if use np and npq with justification give (12.5 – 9.75)/ $\sqrt{3}$ .41 M1 1–F(1.489) A1 0.0681 A0
		3	
(ii)	mean = $250 \times 0.65 = 162.5$ variance = $250 \times 0.65 \times 0.35 = 56.875$	B1	Correct unsimplified np and npq
	$P(<179) = P(z < \frac{178.5 - 162.5}{\sqrt{56.875}}) = P(z < 2.122)$	M1	Substituting <i>their</i> $\mu$ and $\sigma$ (condone $\sigma^2$ ) into the Standardisation Formula with a numerical value for '178.5'. Continuity correct not required for this M1. Condone $\pm$ standardisation formula
	Using continuity correction 178.5 or 179.5	M1	
	= 0.983	A1	Correct final answer
		4	

# $306.\ 9709_s19_ms_61\ Q\hbox{:}\ 7$

Question	Answer	Marks	Guidance
(i)	$P(<700) = P\left(z < \frac{700 - 830}{120}\right) = P(z < -1.083)$	М1	Using $\pm$ standardisation formula, no continuity correction, not $\sigma^2$ or $\sqrt{\sigma}$
	= 1 - 0.8606	M1	Appropriate area $\Phi$ from standardisation formula P(z<) in final probability solution, (<0.5 if z is -ve, >0.5 if z is +ve)
	= 0.1394	A1	Correct final probability rounding to 0.139
	Expected number of female adults = 430 × their 0.1394 = 59.9 So 59 or 60	B1	FT their 3 or 4 SF probability, rounded or truncated to integer
		4	





Question	Answer	Marks	Guidance
(ii)	P(giraffe < 830+ $w$ ) = 95% so $z$ = 1.645	В1	±1.645 seen (critical value)
	$\frac{(830+w)-830}{120} = \frac{w}{120} = 1.645$	М1	An equation using the standardisation formula with a z-value (not $1-z$ ), condone $\sigma^2$ or $\sqrt{\sigma}$ not 0.8519, 0.8289
	w = 197	A1	Correct answer
		3	
(iii)	P(male > 950) = 0.834, so $z = -0.97$	B1	± 0.97 seen
	$\frac{950 - 1190}{\sigma} = -0.97$	М1	Using $\pm$ standardisation formula, condone continuity correction, $\sigma^2$ or $\sqrt{\sigma}$ , condone equating with non z-value not 0.834, 0.166
	$\sigma = 247$	A1	Condone $-\sigma = -247$ . www.
		3	

 $307. 9709_s19_ms_62 Q: 2$ 

Question	Answer	Marks	Guidance
	$P(<28.9) = P\left(z < \frac{28.9 - 30}{1.5}\right)$	В1	Using $\pm$ standardising formula, no continuity correction, not $\sigma^2$ or $\sqrt{\sigma}$ ,
	= P(z < -0.733) $= 1 - 0.7682$	M1	Appropriate area $\Phi$ from standardisation formula P(z <) in final probability solution, Must be a probability, e.g. $1-0.622$ is M0
	= 0.2318	A1	Correct final probability rounding to 0.232. (Only requires M1 not B1 to be awarded
	Number of cartridges is <i>their</i> $0.2318 \times 8$ = 1.85, so 2 (Also accept 1 but not both)	B1	FT using <i>their</i> 4 SF (or better) value, ans. rounded or truncated to integer, no approximation indicated.
		4	

 $308.\ 9709_s19_ms_62\ Q{:}\ 4$ 

Question	Answer	Marks	Guidance
	$z = 0.842 = \left(\frac{121 - \mu}{\sigma}\right)$ so $0.842 \sigma = 121 - \mu$	B1	$\pm$ 0.842 seen but B0 if 1 $\pm$ 0.842 oe seen
	$\left(\begin{array}{c}\sigma\end{array}\right)$ so so $\Gamma$	M1	One appropriate standardisation equation with a z-value, $\mu$ , $\sigma$ and 121 or 102, condone continuity correction. Not 0.158, 0.42,
$z = -0.58 = \left(\frac{1}{2}\right)$	$z = -0.58 = \left(\frac{102 - \mu}{\sigma}\right)$ so $-0.58 \sigma = 102 - \mu$	B1	$\pm$ 0.58(0) seen but B0 if 1 $\pm$ 0.58 oe seen
	Solving	M1	Correct algebraic elimination of $\mu$ or $\sigma$ from <i>their</i> two simultaneous equations to form an equation in one variable, condone 1 numerical slip
	$\sigma = 13.4 \ \mu = 110$	A1	If M0A0 scored (i.e. no algebraic elimination seen), SC B1 can be awarded for both answers correct   Consistent use of $\sigma^2$ or $\sqrt{\sigma}$ throughout apply MR penalty to A mark or SC B mark.
		5	





309. 9709_s19_ms_63 Q: 1

Question	Answer	Marks	Guidance
(i)	$P(79 < X < 91) = P\left(\frac{79 - 85}{6.8} < Z < \frac{91 - 85}{6.8}\right)$ $= P(-0.8824 < Z < 0.8824)$	M1	Using $\pm$ standardisation formula for either 79 or 91, no continuity correction
	$= \Phi(0.8824) - \Phi(-0.8824)$ = 0.8111 - (1 - 0.8111)	M1	Correct area ( $\Phi-\Phi$ ) with one +ve and one –ve z-value or $2\Phi-1$ or $2(\Phi-0.5)$
	= 0.622	A1	Correct answer
		3	
(ii)	z = -1.751	B1	± 1.751 seen
	$-1.751 = \frac{t - 85}{6.8}$	M1	An equation using $\pm$ standardisation formula with a z-value, condone $\sigma^2$ or $\sqrt{\sigma}$
	t = 73.1	A1	Correct answer
		3	

310. 9709_s19_ms_63 Q: 5

Question	Answer	Marks	Guidance
(i)	$P(0, 1, 2) = (0.66)^{14} + {}^{14}C_{1}(0.34)(0.66)^{13} + {}^{14}C_{2}(0.34)^{2}(0.66)^{12}$	M1	Binomial term of form ${}^{14}C_x p^x (1-p)^{14-x} \ 0$
	= 0.0029758 + 0.02146239 + 0.071866	A1	Correct unsimplified answer
	= 0.0963	A1	Correct answer
		3	
(ii)	Mean = $600 \times 0.34 = 204$ , Var = $600 \times 0.34 \times 0.66 = 134.64$	B1	Correct unsimplified $np$ and $npq$ (or sd = 11.603 or Variance = 3366/25)
	$P(< 190) = P\left(z < \frac{189.5 - 204}{\sqrt{134.64}}\right) = P(z < -1.2496)$	Mi	Substituting <i>their</i> $\mu$ and $\sigma$ , (no $\sigma^2$ or $\sqrt{\sigma}$ ) into the Standardisation Formula with a numerical value for '189.5'. Condone $\pm$ standardisation formula
	( \sqrt{134.64})	M1	Using continuity correction 189.5 or 190.5 within a Standardisation formula
	= 1 – Φ (1.2496)	M1	Appropriate area $\Phi$ from standardisation formula P(z<) in final solution, (<0.5 if z is -ve, >0.5 if z is +ve)
	= 1 - 0.8944 = 0.106	A1	Correct final answer
		5	

311. 9709_w19_ms_61 Q: 7

Question	Answer	Marks	Guidance
(i)	$P(46 < X < 53) = P\left(\frac{46 - 49.2}{2.8} < Z < \frac{53 - 49.2}{2.8}\right)$	M1	Using $\pm$ standardisation formula for either 46 or 53, no continuity correction, $\sigma^2$ or $\sqrt{\sigma}$
	P(-1.143 < Z < 1.357)	A1	Both standardisations correct unsimplified
	$\Phi(1.357) + \Phi(1.143) - 1$ = 0.9126 + 0.8735 - 1	M1	Correct final area
	0.786	A1	Final answer
		4	





Question	Answer	Marks	Guidance
(ii)	$\frac{t - 49.2}{2.8} = -1.406$	B1	±1.406 seen
		M1	An equation using $\pm$ standardisation formula with a z-value, condone $\sigma^2$ or $\sqrt{\sigma}$
	45.3	A1	
		3	
(iii)	P(X < 46) = 0.1265	M1	Calculated or ft from (i)
	P(2PB < 46) = 3(1-0.1265)0.1265 ²	М1	3(1-p)p², 0 <p<1< th=""></p<1<>
	0.0419	A1	
		3	

312. 9709_w19_ms_62 Q: 4

Question	Answer	Marks	Guida <mark>nc</mark> e
(i)	$P(8, 9, 10) = {}^{10}C_8 \ 0.66^8 \ 0.34^2 + {}^{10}C_9 \ 0.66^9 \ 0.34^1 + 0.66^{10}$	M1	Correct binomial term, ${}^{10}C_a$ 0.66° $(1-0.66)^b$ $a+b=10, 0 < a,b < 10$
		A1	Correct unsimplified expression
	0.284	B1	CAO
		3	

Question	Answer	Marks	Guidance
(ii)	$np = 0.66 \times 150 = 99$ $npq = 0.66 \times (1 - 0.66) \times 150 = 33.66$	B1	Accept evaluated or unsimplified $\mu$ , $\sigma^2$ numerical expressions, condone $\sigma = \sqrt{33.66} = 5.8017 \text{ or } 5.802$ CAO
	$P(X > 84) = P\left(Z > \frac{84.5 - 99}{\sqrt{33.66}}\right)$	M1	$\pm$ Standardise, $\frac{x - their 99}{\sqrt{their 33.66}}$ , condone $\sigma^2$ , $x$ a value
		M1	84.5 or 83.5 used in <i>their</i> standardisation formula
	(=P(Z>-2.499))	M1	Correct final area
	0.994	A1	Final answer (accept 0.9938)
	80		SC if no standardisation formula seen, B2 $P(Z > -2.499) = 0.994$
	Y	5	





#### 313. 9709_w19_ms_62 Q: 6

Question	Answer	Marks	Guidance
i(i)	$P(X<45) = P\left(Z < \frac{45-40}{8}\right)$ = P(Z<0.625)	M1	$\pm$ Standardise, no continuity correction, $\sigma^2$ or $\sqrt{\sigma}$ , formula must be seen
	0.734(0)	A1	CAO
		2	
(ii)	1 - 2(1 - (i)) = 2(i) - 1 = 2((i) - 0.5)	М1	Use result of part (i) or recalculated to find area OE
	0.468	A1ft	0 < FT from (i) < 1 or correct.
		2	
(iii)	P(X<10) = 48/500 = 0.096 $z = -1.305$	B1	$z = \pm 1.305$
	P(X>24) = 76/500 = 0.152 z = 1.028	B1	$z = \pm 1.028$
	$ 10 - \mu = -1.305\sigma  24 - \mu = 1.028\sigma $	M1	Form 1 equation using 10 or 24 with $\mu$ , $\sigma$ , $z$ -value. Allow continuity correction, not $\sigma^2$ , $\sqrt{\sigma}$
	$14 = 2.333\sigma$	M1	OE Solve two equations in $\sigma$ and $\mu$ to form equation in one variable
	$\sigma = 6.[00],  \mu = 17.8[3]$	A1	CAO, WWW
		5	

# 314. 9709_w19_ms_63 Q: 4

Question	Answer	Marks	Guidance
(i)	P(h < 148) = 0.67	B1	$z = \pm 0.44$ seen
	$\frac{h - 148}{8} = 0.44$	M1	$z\text{-value} = \pm \frac{(h-148)}{8}$
	151.52 ≈ 152	A1	CAO
	<b>10.0</b>	3	
(ii)	$P(144 < X < 152) = P\left(\frac{144 - 148}{8} < Z < \frac{152 - 148}{8}\right)$	M1	Using $\pm$ standardisation formula for either 144 or 152, $\mu = 148$ , $\sigma = 8$ and no continuity correction, allow $\sigma^2$ or $\sqrt{\sigma}$
	$= P\left(-\frac{1}{2} < Z < \frac{1}{2}\right) = 0.6915 - (1 - 0.6915) = 2 \times 0.6915 - 1$	M1	Correct final area legitimately obtained from $phi(their\ z_2) - phi(their\ z_1)$
	= 0.383	A1	Final probability answer
	$0.383 \times 120 = 45.96$ Accept 45 or 46 only	B1FT	Their prob (to 3 or 4 sf) $\times$ 120, rounded to a whole number or truncated
		4	

#### $315.\ 9709_w19_ms_63\ Q\hbox{:}\ 7$

Question	Answer	Marks	Guidance
(i)(a)	$P(0, 1, 2) = {}^{6}C_{0} \ 0.3^{0} \ 0.7^{6} + {}^{6}C_{1} \ 0.3^{1} \ 0.7^{5} + {}^{6}C_{2} \ 0.3^{2} \ 0.7^{4}$	M1	Binomial term of form ${}^6\mathrm{C}_x p^x (1-p)^{6-x}  0  any p, x \neq 6,0$
	0.1176 + 0.3025 + 0.3241	A1	Correct unsimplified answer
	0.744	A1	Correct final answer
		3	





Question	Answer	Marks	Guidance
(i)(b)	P(support neither choir) = $1 - (0.3 + 0.45) = 0.25$	M1	$0.25^n$ seen alone, $1 \le n \le 6$
	P(6 support neither choir) = $0.25^6$ = $0.000244$ or $\frac{1}{4096}$	A1	Correct final answer
		2	
(ii)	Mean = $240 \times 0.25 = 60$ Variance = $240 \times 0.25 \times 0.75 = 45$	B1FT	Correct unsimplified 240p and 240pq where p =their P(support neither choir) or 0.25
	$P(X < 50) = P\left(Z < \frac{49.5 - 60}{\sqrt{45}}\right) = P(Z < -1.565)$	М1	Substituting their $\mu$ and $\sigma$ (condone $\sigma^2$ ) into the $\pm$ Standardisation Formula with a numerical value for '49.5'.
		M1	Using continuity correction 49.5 or 50.5 within a standardisation expression
	1 – 0.9412	M1	Appropriate area $\Phi$ from standardisation formula P(z<) in final solution, (< 0.5 if z is -ve, > 0.5 if z is +ve)
	0.0588	A1	Correct final answer
		5	O.

316. 9709_m18_ms_62 Q: 7

Question	Answer	Marks	Guidance
(i)	P(X > 410) = 225/6000 = 0.0375	M1	Use $1 - \frac{225}{6000} = 0.9625$ to find z value
	$P\left(Z > \frac{410 - 400}{\sigma}\right) = 0.0375: 0.9625$		
	$z \text{ value} = \pm 1.78$	A1	z value: ± 1.78
	$\frac{10}{\sigma} = 1.78$	M1	$(410-400)/\sigma = their z$ (must be a z value)
	$\sigma = 5.62$	A1	
		4	
(ii)	We need $P(Z < -1.5)$ and $P(Z > 1.5)$	M1	Attempt at P( $Z < -1.5$ ) or P( $Z > 1.5$ ) 1 – $\Phi(1.5)$ seen
	$\Phi(-1.5) + 1 - \Phi(1.5)$ = 2 - 2\Phi(1.5)	M1	Or equivalent expression with values
	$=2-2\times0.9332=0.1336$ (0.134)	A1	Correct to 3sf
	Number expected = 500 × 0.1336 = 66.8; 66 or 67 packets	B1ft	0.1336 used or FT their 4sf probability times 500, (not 0.9625 or 0.0375) rounded or truncated
	**	4	





# 317. 9709_m18_ms_62 Q: 8

Question	Answer	Marks	Guidance
(i)	$P(4) + P(5) = {}^{5}C_{4} \left(\frac{1}{4}\right)^{4} \left(\frac{3}{4}\right)^{1} + {}^{5}C_{5} \left(\frac{1}{4}\right)^{5} \left(\frac{3}{4}\right)^{0}$	М1	One binomial term, with $p < 1$ , $n=5$ , $p+q=1$
	= 0.014648 + 0.00097656	M1	Add 2 correct unsimplified binomial terms
	$= 0.0156 \text{ or } \frac{1}{64}$	A1	
		3	
(ii)	$1 - P(0) > 0.995$ : $0.75^n < 0.005$	M1	Equation or inequality involving 0.75" and 0.005 or 0.25" and 0.995
	$   \frac{n\log 0.75 < \log 0.005}{n > 18.4:} $	M1	Attempt to solve <i>their</i> exponential equation using logs, or trial and error May be implied by their answer
	n = 19	A1	
		3	.0,
(iii)	p = 0.25, n = 160: mean = 160 x 0.25 (= 40) variance = 160 x 0.25 x 0.75 (=30)	B1	Correct unsimplified mean and variance
	$P(X < 50) = P\left(Z < \frac{49.5 - 40}{\sqrt{30}}\right)$	M1	Use standardisation formulae must include square root.
		M1	Use continuity correction ±0.5 (49.5 or 50.5)
	= P(Z < 1.734) = 0.959	A1	Correct final answer
		4	NO.

# $318.\ 9709_s18_ms_61\ Q{:}\ 4$

Question	Answer	Marks	Guidance
(a)	$z_1 = 2.4$	В1	± 2.4 seen accept 2.396
	$z_2 = -0.5$	B1	± 0.5 seen
	$2.4 = \frac{36800 - \mu}{\sigma}$	M1	Either standardisation eqn with z value, not 0.5082, 0.7565, 0.0082, 0.6915, 0.3085, 0.6209, 0.0032 or any other probability
	$-0.5 = \frac{31000 - \mu}{\sigma}$	M1	Sensible attempt to eliminate $\mu$ or $\sigma$ by substitution or subtraction from their 2 equations (z-value not required), need at least 1 value stated
	$\sigma = 2000$ $\mu = 32000$	A1	Both correct answers
		5	
(b)	$P(X < 3\mu) = P\left(z < \frac{3\mu - \mu}{(4\mu/3)}\right)$ or $P = \left(z < \frac{(9\sigma/4) - (3\sigma/4)}{\sigma}\right)$	M1	Standardise, in terms of one variable, accept $\sigma^2$ or $\sqrt{\sigma}$
	$P(z < \frac{6}{4})$	M1	$\frac{6}{4}$ or $\frac{6}{4\sigma}$ seen
	= 0.933	A1	Correct final answer
		3	





319. 9709_s18_ms_61 Q: 5

Question	Answer	Marks	Guidance
(i)	$P(4, 5, 6) = {}^{15}C_4(0.22)^4(0.78)^{11} + {}^{15}C_5(0.22)^5(0.78)^{10} +$	M1	One binomial term ${}^{15}C_x p^x (1-p)^{15-x} \ 0$
	¹⁵ C ₆ (0.22) ⁶ (0.78) ⁹	A1	Correct unsimplified expression
	= 0.398	A1	Correct answer
		3	
(ii)	$\mu = 145 \times 0.22 = 31.9$ $\sigma^2 = 145 \times 0.22 \times 0.78 = 24.882$	B1	Correct unsimplified mean and variance
	$P(x > 26) = P\left(z > \frac{26.5 - 31.9}{\sqrt{24.882}}\right) = P(z > -1.08255)$	M1	Standardising must have sq rt
		M1	25.5 or 26.5 seen as a cc
	= Φ(1.08255)	M1	Correct area $\Phi$ , must agree with their $\mu$
	= 0.861	A1	Correct final answer accept 0.861, or 0.860 from 0.8604 not from 0.8599
		5	

 $320.\ 9709_s18_ms_62\ Q:\ 3$ 

Question	Answer	Marks	Guidance
(i)	z = -1.282	B1	±1.282 seen
	$-1.282 = \frac{440 - \mu}{9}$	M1	$\pm$ Standardisation equation with 440, 9 and $\mu$ , equated to a z-value, (not 1 – z-value or probability e.g. 0.1841, 0.5398, 0.6202, 0.8159)
	$\mu = 452$	A1	Correct answer rounding to 452, not dependent on B1
		3	
(ii)	P(z > 1.8) = 1 - 0.9641 = 0.0359	B1	
	Number = 0.0359 × 150 = 5.385	Mi	$p \times 150, 0$
	(Number of cartons = ) 5	A1FT	Accept either 5 or 6, not indicated as an approximation, e.g. $\sim$ , about FT <i>their</i> $p \times 150$ , answer as an integer
		3	





# $321.\ 9709_s18_ms_62\ Q\hbox{:}\ 7$

Question	Answer	Marks	Guidance
(i)	<b>Method 1</b> P(< 11) = 1 – P(11, 12, 13)	M1	Binomial expression of form $^{13}C_x(p)^x(1-p)^{13-x}$ , $0 < x < 13$ , $0$
	$=1-{}^{13}C_{11}(0.6)^{11}(0.4)^2-{}^{13}C_{12}(0.6)^{12}(0.4)-(0.6)^{13}$	М1	Correct unsimplified answer
	= 0.942	A1	CAO
	<b>Method 2</b> P(< 11) = P(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10)	M1	Binomial expression of form $^{13}C_x$ $(p)^x(1-p)^{13-x}$ $0 < x < 13$ , $0$
	$= (0.4)^{13} + {}^{13}C_1(0.4)^{12}(0.6) + \ldots + {}^{13}C_{10}(0.4)^3(0.6)^{10}$	M1	Correct unsimplified answer
	= 0.942	A1	CAO
		3	
(ii)	$\mu = 130 \times 0.35 = 45.5$ var = $130 \times 0.35 \times 0.65 = 29.575$	В1	Correct unsimplified mean and var (condone $\sigma^2 = 29.6$ , $\sigma = 5.438$ )
	$P(  > 50) = P\left(z > \frac{49.5 - 45.5}{\sqrt{29.575}}\right) = P(z > 0.7355)$	M1	Standardising, using $\pm \left(\frac{x - their \text{ mean}}{their \sigma}\right)$ , $x = \text{value to standardise}$ 49.5 or 50.5 seen in $\pm$ standardisation equation
	$=1-\Phi(0.7355)$	M1	Correct final area
	= 1 - 0.7691	M1	10)
	= 0.231	A1	Correct final answer
		5	

Question	Answer	Marks	Guidance
(iii)	$1 - (0.65)^n > 0.98 \text{ or } 0.02 > (0.65)^n$	M1	Eqn or inequality involving, $0.65^n$ and $0.02$ or $0.35^n$ and $0.98$
	n > 9.08	M1	Attempt to solve their eqn or inequality by logs or trial and error
	n = 10	A1	CAO
		3	<b>G</b>

# $322.\ 9709_s18_ms_63\ Q\hbox{:}\ 6$

Question	Answer	Marks	Guidance
(i)	$z_1 = \pm \frac{4.1 - 5.7}{0.8} = -2$ $z_2 = \pm \frac{5 - 5.7}{0.8} = -0.875$	M1	At least one standardising no cc no sq rt no sq using 5.7 and 0.8 and either 4.1 or 5
	P(Toffee Apple) = $P(d < 5.0) - P(d < 4.1)$ = $P(z < -0.875) - P(z < -2)$ = $\Phi(-0.875) - \Phi(-2)$ = $\Phi(2) - \Phi(0.875)$	M1	Correct area $\Phi$ – $\Phi$ legitimately obtained – need 2 negative z-values or 2 positives – not one of each
	= 0.9772 - 0.8092 = 0.168 (or 0.1908 - 0.0228)	A1	Correct final answer
	Total:	3	
(ii)	$np = 250 \times 0.168 = 42$ , $npq = 34.944$	B1ft	Correct unsimplified mean and var – ft their prob for (i) providing $(0  Implied by \sigma = \sqrt{34.944} = 5.911$
	$P(<50) = P\left(z < \frac{49.5 - 42}{\sqrt{34.944}}\right) = P(z < 1.2687)$	M1	$\pm$ Standardising using 50, their mean and sd; must have sq rt.
		M1	49.5 or 50.5 seen as a cc
	$=\Phi(1.2687)$	M1	Correct area $\Phi$ (> 0.5 for + z and < 0.5 for -z)in their final answer
	= 0.898	A1	Correct final answer
	Total:	5	





323. 9709_w18_ms_61 Q: 4

Question	Answer	Marks	Guidance
(a)	$P(X < 29.4) = P(Z < \frac{29.4 - 31.4}{\sqrt{3.6}})$ = P(Z < -1.0541)	M1	Standardise, no cc, must have sq rt.
	= 1 - 0.8540	M1	Obtain 1 – prob
	= 0.146	A1	Correct final answer
		3	

Question	Answer	Marks	Guidance
(b)	$P(X < 12) = \frac{42}{400} = 0.105 \text{ and } P(X > 19) = \frac{58}{400} = 0.145$	М1	Eqn with $\mu, \sigma$ and a z-value. Allow cc, wrong sign, but not $\sqrt{\sigma}$ or $\sigma^2$
	$\frac{12-\mu}{\sigma} = -1.253$	B1	Any form with z value rounding to $\pm 1.25$
	$\frac{19-\mu}{\sigma}=1.058$	B1	Any form with z value rounding to $\pm 1.06$
	$12 - \mu = -1.253\sigma$ $19 - \mu = 1.058\sigma$ $7 = 2.307\sigma \text{ or } 36.455 + 2.307\mu = 0 \text{ oe}$	M1	Solve 2 equations in $\mu$ , $\sigma$ eliminating to 1 unknown
	$\mu = 15.8, \sigma = 3.03$	A1	Correct answers
		5	10,

 $324.\ 9709_w18_ms_61\ Q: 5$ 

Question	Answer	Marks	Guidance
(i)	$ \begin{vmatrix} 1 - (P(7) + P(8) + P(9)) \\ = 1 - ({}^{9}C_{7} \ 0.8^{7} \times 0.2^{2} \ + {}^{9}C_{8} \ 0.8^{8} \times 0.2^{1} + {}^{9}C_{9} \ 0.8^{9} \times 0.2^{0}) \end{vmatrix} $	M1	Any binomial term of form ${}^{9}C_{x}p^{x}(1-p)^{9-x}, x \neq 0$
		M1	Correct unsimplified expression
	= 1 - (0.3019899 + 0.3019899 + 0.1342177) = 0.262	A1	Correct answer
		3	

Question	Answer	Marks	Guidance
(ii)	Mean = $200 \times 0.8 = 160$ : var = $200 \times 0.8 \times 0.2 = 32$	B1	Both unsimplified
	$P(X > 166) = P(Z > \frac{166.5 - 160}{\sqrt{32}})$	M1	Standardise, $z = \pm \frac{x - their 160}{\sqrt{their 32}}$ with square root
		M1	166.5 or 165.5 seen in attempted standardisation expression
	= P(Z > 1.149) = 1 - 0.8747	M1	$1-a \ \Phi$ -value, correct area expression, linked to final answer
	= 0.125	A1	Correct final answer
		5	
(iii)	np = 160, nq = 40: both $> 5$ (so normal approx. holds)	B1	Both parts required
		1	





 $325.\ 9709_w18_ms_62\ Q\hbox{:}\ 7$ 

Question	Answer	Marks	Guidance
(a)(i)	$P(X < 4) = P\left(Z < \frac{4 - 3.24}{0.96}\right)$	M1	±Standardisation formula, no cc, no sq rt, no square
	= P(Z < 0.7917) = 0.7858	A1	0.7855  or $p = 0.786$ Cao (implies M1A1 awarded), may be seen used in calculation
	their 0.7858 × 365 = 286 (or 287)	B1ft	Their probability $\times$ 365 provided 4sf probability <u>seen</u> . FT answer rounded or truncated to nearest integer. No approximation notation used.
		3	
(a)(ii)	$P(X < k) = P(Z < \frac{k - 3.24}{0.96}) = 0.8$	B1	$(z=) \pm 0.842$ seen
	$\frac{k - 3.24}{0.96} = 0.842$	M1	$z=\pm\frac{k-3.24}{0.96}$ , allow cc, sq rt or square equated to a z-value (0.7881, 0.2119, 0.158, 0.8, 0.2 etc. are not acceptable)
	k = 4.05	A1	Correct final answer, www
		3	
(a)(iii)	P(-1.5 < Z < 1.5) =	M1	$\Phi(z=1.5)$ or $\Phi(z=-1.5)$ seen used or $p=0.9332$ seen
	$\Phi(1.5) - \Phi(-1.5) = 2\Phi(1.5) - 1$ = 2 × 0.9332 - 1 oe	М1	Correct final area expression using their probabilities
	= 0.866	A1	Correct final answer
		3	107

Question	Answer	Marks	Guidance
(b)	$P(Y>0) = P\left(Z > \frac{0-\mu}{\sigma}\right) \equiv P\left(Z > \frac{0-\mu}{3\mu/4}\right) \text{ or }$ $P\left(Z > \frac{0-\left(\frac{4\sigma}{3}\right)}{\sigma}\right)$	Mi	±Standardisation attempt in terms of one variable no sq rt or square, condone ±0.5 as cc
	= P(Z > -4/3)	A1	Correct unsimplified standardisation, no variables
	= 0.909	A1	Correct final answer
		3	

326. 9709_w18_ms_63 Q: 5

Question		Answer		Marks	Guidance
(i)	$z_1 = \pm \frac{90 - 120}{24} = -\frac{5}{4}, \ z_2$	$_{2}=\pm\frac{140-120}{24}$	$=\frac{5}{6}$	M1	At least one standardisation, no cc, no sq rt, no sq using 120 and 24 and either 90 or 140
	$=\Phi\left(\frac{20}{24}\right)-\Phi\left(-\frac{30}{24}\right)$		A1	-5/4 and 5/6 unsimplified	
	$= \Phi(0.8333) - (1 - \Phi(1.2)$ $= 0.7975 - (1 - 0.8944) \circ$	**	025 = 0.6919	M1	Correct area $\Phi - \Phi$ legitimately obtained and evaluated from phi(their $z_2$ ) – phi (their $z_1$ )
	= 0.692 AG			A1	Correct answer obtained from 0.7975 and 0.1056 oe to 4sf or 0.6919 seen www
				4	





Question	Answer	Marks	Guidance
(ii)	Method 1		
	Probability = P(2, 3, 4) = $0.692^2(1 - 0.692)^2 \times {}^4C_2 + 0.692^3(1 - 0.692) \times {}^4C_3 + 0.692^4$	M1	Any binomial term of form $4C_x p^x (1-p)^{4-x}$ , $x \neq 0$ or 4
		B1	One correct bin term with $n = 4$ and $p = 0.692$ ,
	= 0.27256 + 0.40825 + 0.22931	M1	Correct unsimplified expression using 0.692 or better
	= 0.910	A1	Correct answer
	Method 2:		
	1 - P(0, 1) =	M1	Any binomial term of form $4C_x p^x (1-p)^{4-x}$ , $x\neq 0$ or 4
	$\boxed{1 - 0.692^{0}(1 - 0.692)^{4} \times {}^{4}C_{0} - 0.692^{1}(1 - 0.692)^{3} \times {}^{4}C_{1}}$	B1	One correct bin term with $n = 4$ and $p = 0.692$
	= 1 - 0.00899 - 0.0808757	M1	Correct unsimplified expression using 0.692 or better
	= 0.910	A1	Correct answer
		4	

327. 9709_w18_ms_63 Q: 6

Question	Answer	Marks	Guidance
(i)	$P(X>1800) = 0.96$ , so $P(Z > \frac{1800 - 2000}{\sigma}) = 0.96$	B1	± 1.75 seen
	$\Phi(\frac{200}{\sigma}) = 0.96$	M1	$z = \pm \frac{1800 - 2000}{\sigma}$ , allow cc, allow sq rt, allow sq equated to a
	$\frac{200}{\sigma} = 1.751$		z-value
	$\sigma = 114$	A1	Correct final answer www
		3	
(ii)	Mean = $300 \times 0.2 = 60$ and variance = $300 \times 0.2 \times 0.8 = 48$	B1	Correct unsimplified mean and variance
	$P(X < 70) = P(Z > \frac{69.5 - 60}{\sqrt{48}})$	М1	$Z = \pm \frac{x - their 60}{\sqrt{their 48}}$
	$=\Phi(1.371)$	M1	69.5 or 70.5 seen in an attempted standardisation expression as cc
	=0.915	A1	Correct final answer
		4	
(iii)	np = 60, nq = 240: both $> 5$ , (so normal approximation holds)	B1	Both parts evaluated are required
		1	

328. 9709_m17_ms_62 Q: 3

Question	Answer	Marks	Guidance
	$np = 160 \times 0.1 (16) \ npq = 160 \times 0.1 \times 0.9 (14.4)$	B1	Correct unsimplified np and npq
	$P(> 17) = P\left(z > \frac{17.5 - 16}{\sqrt{14.4}}\right) = P(z > 0.3953)$	M1	Standardising need √
		M1	16.5 or 17.5 seen in standardised eqn for continuity correction
	= 1 - 0.6536	M1	Correct area from their mean $(1 - \Phi)$ , final solution
	= 0.346	A1	
	Total:	5	





 $329.\ 9709_m17_ms_62\ Q:\ 4$ 

Question	Answer	Marks	Guidance
(i)	LQ = 0.7495 Med = 0.7507 UQ = 0.7517	M1	Attempt to find all 3 quartiles can be implied, Condone LQ=0.7496, Med=0.7506, UQ=0.7515
		В1	Correct median line in box using their scale
	0.747 0.748 0.749 0.750 0.751 0.752 0.753 Wt kg		
		A1	Correct quartiles in box
		B1	Correct end whiskers(not dots or boxes), lines not through box,
		B1	Correct uniform scale from at least 0.7473 to 0.7532, and label (wt) kg oe can be seen in title or scale
	Total:	5	

Question	Answer	Marks	Guidance				7	ř.			
(ii)	Normal	В1			1	ď					
	Symmetrical/peaks in middle or tails off quickly	B1	Need symm + another reason	3	Z	W					
	Total:	2	•								

 $330.\ 9709_m17_ms_62\ Q:\ 7$ 

Question	Answer	Marks	Guidance
(a)(i)	$0.674 = \frac{8.8 - \mu}{\sigma} \implies 0.674\sigma = 8.8 - \mu$	B1	±0.674 seen
	$-0.935 = \frac{7.7 - \mu}{\sigma} \implies -0.935\sigma = 7.7 - \mu$	B1	$\pm 0.935$ seen (condone $\pm 0.934$ )
		M1	An eqn with a z-value, $\mu$ and $\sigma$ allow sq rt, sq cc
		M1	sensible attempt to eliminate $\mu$ or $\sigma$ by substitution or subtraction
	$\sigma = 0.684$ $\mu = 8.34$	A1	correct answers (from -0.935)
	Total:	5	
(a)(ii)	$P(<8.2) = P\left(z < \frac{8.2 - 7.9}{0.44}\right)$	M1	Standardising no cc no sq rt no sq
		M1	Correct area ie Φ, final solution
	= P(z < 0.6818) = 0.7524	A1	Correct prob rounding to 0.752
	$P(3) = {}^{5}C_{3} (0.7524)^{3} (0.2476)^{2}$	М1	Binomial 5C_x powers summing to 5, any $p$ , $\Sigma p = 1$
	= 0.261	A1	
	Total:	5	

Question	Answer	Marks	Guidance
(b)	$P(< 1.5\mu) = P\left(z < \frac{1.5\mu - \mu}{\mu}\right) = P(z < 0.5)$	*M1	standardising with $\mu$ and $\sigma(\sigma \max$ be replaced by $\mu)$
		DM1	just one variable
	= 0.692	A1	
	Total:	3	





331.  $9709_s17_ms_61$  Q: 6

Question	Answer	Marks	Guidance
(a)(i)	z = 0.674	B1	rounding to ±0.674 or 0.675
	$0.674 = \frac{6.8 - \mu}{0.25\mu}$	M1	standardising, no cc, no sq rt, no sq, $\sigma$ may still be present on RHS
		M1	subst and sensible solving for $\mu$ must collect terms, no z-value needed can be 0.75 or 0.7734 need a value for $\mu$
	$\mu = 5.82$	A1	
	Total:	4	
(a)(ii)	$P(X < 4.7) = P\left(z < \frac{4.7 - 5.819}{1.4548}\right)$	М1	$\pm$ standardising no cc, no sq rt, no sq unless penalised in (a)(i)
	$= \varphi(-0.769) = 1 - 0.7791$	M1	correct side for their mean i.e. 1-φ (final solution)
	= 0.221	A1	
	Total:	3	
(b)	$P(<15.75) = P\left(z < \frac{15.75 - 16}{0.2}\right) = 1 - P(z < 1.25) = 1 - 0.8944 = 0.1056$ and	*M1	Standardising for 15.75 or 16.25 no cc no sq no sq rt unless penalised in (a)(i) or (a)(ii)
	P(>16.25) = 0.1056  by sym		
	P(usable) = 1 - 0.2112 = 0.7888	B1	2ф-1 OE for required prob, (final solution)
	Usable rods= $1000 \times 0.7888 =$	DM1	Mult their prob by 1000 dep on recognisable attempt to standardise
	788 or 789	A1	
	Total:	4	

332. 9709_s17_ms_62 Q: 5

(i)	$(z=)\frac{4.2-3.9}{\sigma}$	V	M1	Standardising, not square root of $\sigma$ , not $\sigma^2$
	z = 0.916 or $0.915$	3"	B1	Accept $0.915 \leqslant \pm z \leqslant 0.916$ seen
	$\sigma = 0.328$	<i>*</i>	A1	Correct final answer (allow 20/61 or 75/229)
		Total:	3	

Question	Answer	Marks	Guidance
(ii)	z = 4.4 - 3.9/their 0.328 or $z = 3.4 - 3.9$ /their 0.328 = 1.5267 = -1.5267	M1	Standardising attempt with 3.4 or 4.4 only, allow square root of $\sigma$ , or $\sigma^2$
	Ф=0.9364	A1	$0.936 \leqslant \Phi \leqslant 0.937 \text{ or } 0.063 \leqslant \Phi \leqslant 0.064 \text{ seen}$
	Prob = $2\Phi - 1 = 2(0.9364) - 1$	M1	Correct area $2\Phi-1$ OE i.e. $\Phi=-(1-\Phi)$ , linked to final solution
	= 0.873	A1	Correct final answer from $0.9363 \leqslant \Phi \leqslant 0.9365$
	Total:	4	
(iii)	dividing (0.5) by a larger number gives a smaller z-value or more spread out as sd larger or use of diagrams	*B1	No calculations or calculated values present e.g. ( $\sigma$ =)0.656 seen Reference to spread or $z$ value required
	Prob is less than that in (ii)	DB1	Dependent upon first B1
	Total:	2	





 $333.\ 9709_s17_ms_63\ Q\hbox{:}\ 2$ 

$np = 270 \times 1/3 = 90, npq = 270 \times 1/3 \times 2/3 = 60$	B1	Correct unsimplified np and npq, SOI
$P(x>100) = P(z>\frac{99.5-90}{\sqrt{60}}) = P(z>1.2264)$	M1 M1	
= 1 - 0.8899	M1	Correct area $1 - \Phi$ implied by final prob. $\leq 0.5$
= 0.110	A1	
Total:	5	

 $334.\ 9709_s17_ms_63\ Q{:}\ 4$ 

(a)	$P(x > 0) = P\left(z > \pm \frac{0 - \mu}{\sigma}\right)$ $= P\left(z > \frac{-\mu}{\mu/1.5}\right) \text{ or } P\left(z > \frac{-1.5\sigma}{\sigma}\right)$	M1	$\pm$ Standardising, in terms of $\mu$ and/or $\sigma$ with 0 in numerator, no continuity correction, no $$
	= P(z > -1.5)	A1	Obtaining z value of $\pm 1.5$ by eliminating $\mu$ and $\sigma$ , SOI
	= 0.933	A1	
	Total:	3	
(b)	z = -1.151	B1	$\pm z$ value rounding to 1.1 or 1.2
	$-1.151 = \frac{70 - 120}{s}$	M1	$\pm$ Standardising (using 70) equated to a z-value, no cc, no squaring, no $\vee$
	$\sigma = 43.4 \text{ or } 43.5$	A1	
	Totals:	3	

335. 9709_w17_ms_61 Q: 7

Question	Answer		Guidance
(i)	$P(<570) = P\left(z < \frac{570 - 500}{91.5}\right) = P(z < 0.7650)$ = 0.7779	M1	Standardising for either 570 or 390, no cc, no sq, no $$
	$P(<390) = P\left(z < \frac{390 - 500}{91.5}\right) = P(z < -1.202)$	A1	One correct z value
	=1-0.8853=0.1147	A1	One correct $\Phi$ , final solution
	Large: 0.222 (0.2221) Small: 0.115 (0.1147)	A1	Correct small and large
	Medium: 0.663 (0.6632)	A1FT	Correct Medium rounding to 0.66 or ft 1 – (their small + their large)
		5	





Question	Answer	Marks	Guidance
(ii)	$1.645 = \left(\frac{x - 500}{91.5}\right)$	B1	± 1.645 seen (critical value)
		М1	Standardising accept cc, sq. sq rt
	x = 651	A1	650 ≤ Ans ≤ 651
		3	
(iii)	P(x > 610) = 0.1147  (symmetry)	M1	Attempt to find upper end prob $x > 610$ or $\Phi(x)$ , ft their P(< 390) from (i)
	$0.3 + 0.1147 = 0.4147 \Rightarrow \Phi(x) = 0.5853$	M1	Adding 0.3 to <i>their</i> $P(x > 610)$ or subt 0.5 from $\Phi(x)$ or $0.8853 - 0.3$
	z = 0.215 or $0.216$	M1	Finding $z = \Phi^{-1}(0.5853)$
	$0.215 = \frac{k - 500}{91.5}$	M1	Standardising and solving, accept cc, sq. sq rt
	k = 520	A1	
		5	

 $336.\ 9709_w17_ms_62\ Q\hbox{:}\ 5$ 

Question	Answer	Marks	Guidance
(i)	EITHER: $P(> 2) = 1 - P(0, 1, 2)$	(M1	Binomial term of form 30 C _x $p^x(1-p)^{30-x}$ , $0  any p$
	$ = 1 - (0.96)^{30} - {}^{30}C_1(0.04)(0.96)^{29} - {}^{30}C_2(0.04)^2(0.96)^{28} $ $ (= 1 - 0.2938 0.3673 0.2219) $	A1	Correct unsimplified answer
	= 1-0.883103 = 0.117 (0.116896)	A1)	
	OR: $P(> 2) = P(3,4,5,6,30)$	(M1	Binomial term of form 30 C _x $p^x(1-p)^{30-x}$ , $0  any p$
	$= {}^{30}\mathrm{C}_{3}(0.04)^{3}(0.96)^{27} + {}^{30}\mathrm{C}_{4}(0.04)^{4}(0.96)^{26} + \dots + (0.04)^{30}$	A1	Correct unsimplified answer
	= 0.117	A1)	
	~0	3	

Question	Answer	Marks	Guidance
(ii)	$np = 280 \times 0.1169 = 32.73$ , $npq = 280 \times 0.1169 \times 0.8831 = 28.9$	M1 FT	Correct unsimplified np and npq, FT their p from (i),
	$P(\geqslant 30) = P\left(z > \frac{29.5 - 32.73}{\sqrt{28.9}}\right) = P(z > -0.6008)$	М1	Substituting their $\mu$ and $\sigma$ ( $\sqrt{npq}$ only) into the Standardisation Formula
	•	M1	Using continuity correction of 29.5 or 30.5
	***	M1	Appropriate area $\Phi$ from standardisation formula $P(z>)$ in final solution
	= 0.726	A1	
		5	

337. 9709_w17_ms_62 Q: 7

Question	Answer	Marks	Guidance
(i)	$P(>65) = P\left(z > \frac{65 - 61.4}{12.3}\right) = P(z > 0.2927)$	M1	Standardising no continuity correction, no square or square root, condone ± standardisation formula
		M1	Correct area (< 0.5)
	= 1 - 0.6153 = 0.385	A1	
		3	





Question	Answer	Marks	Guidance
(ii)	P (< 65) = 0.6153 so P(< k) = 0.25 + 0.6153 = 0.8653	B1	
	z = 1.105	B1	$z = \pm 1.105$ seen or rounding to 1.1
	$1.105 = \frac{k - 61.4}{12.3}$	M1	standardising allow $\pm$ , cc, sq rt, sq. Need to see use of tables backwards so must be a $z$ -value, not $1-z$ value.
	k = 75.0	A1	Answers which round to 75.0. Condone 75 if supported.
		4	
(iii)	$2.326 = \frac{97.2 - \mu}{\sigma}$	B1	± 2.326 seen (Use of critical value)
	$-0.44 = \frac{55.2 - \mu}{\sigma}$	B1	± 0.44 seen
		М1	An equation with a z-value, $\mu$ , $\sigma$ and 97.2 or 55.2, allow $\sqrt{\sigma}$ or $\sigma^2$
		M1	Algebraic elimination $\mu$ or $\sigma$ from <i>their</i> two simultaneous equations
	$\mu = 61.9$ $\sigma = 15.2$	A1	both correct answers
		5	.07

338. 9709_w17_ms_63 Q: 7

Question	Answer	Marks	Guidance
(i)	$P(t > 6) = P\left(z > \frac{6 - 5.3}{2.1}\right) = P(z > 0.333)$	M1	Standardising, no continuity correction, no sq, no sq rt
	= 1 - 0.6304	M1	Correct area 1 – $\Phi$ (< 0.5), final solution
	= 0.370 or 0.369	A1	0
		3	
(ii)	z = 1.645	B1	± 1.645
	$1.645 = \frac{x - 5.3}{2.1}$	M1	Standardising, no continuity correction, allow sq, sq rt. Must be equated to a z-value
	x = 8.75 or 8.755 or 8.7545	A1	
		3	
(iii)	n = 10, p = 0.05	M1	Bin term ${}^{10}C_x p^x (1-p)^{10-x}$
	$P(0, 1, 2) = (0.95)^{10} + {}^{10}C_1(0.05)(0.95)^9 + {}^{10}C_2(0.05)^2(0.95)^8$	M1	Correct unsimplified answer
	= 0.988 (0.9885 to 4 sf)	A1	
		3	
(iv)	P(misses bus) = P(t < 0)	*M1	Seeing t linked to zero
	$= P\left(z < \frac{0-5.3}{2.1}\right) = P(z < -2.524) = 1 - \Phi(2.524)$ $= 1 - 0.9942$	DM1	Standardising with $t = 0$ , no continuity correction, no sq, no sq rt
	= 0.0058	A1	
		3	





 $339.\ 9709_m16_ms_62\ Q:\ 7$ 

(i)	$z = -1.645$ $-1.645 = \frac{0.9 - m}{0.35}$	B1		± 1.64 to 1.65 seen
	$-1.645 = \frac{38 \text{ m}}{0.35}$	M1		Standardising with a z-value accept $(0.35)^2$ Correct answer
	<i>m</i> = 1.48	A1	3	
(ii)	$P(<2) = P\left(z < \frac{2 - 1.476}{0.35}\right)$	M1		Standardising no sq, FT their m, no cc
	= P(z < 1.50)	M1		Correct area i.e. F
	= 0.933	A1		Accept correct to 2sf here
	Prob = $(0.9332)^4$ = $0.758$	M1 A1	5	Power of 4, from attempt at $P(z)$ Correct answer

(iii) 
$$P(t > 0.6\mu) = P\left(z > \frac{0.6\mu - \mu}{\mu/3}\right)$$

$$= P(z > -1.2)$$

$$= 0.885$$
M1
A1
Standardising attempt with 1 or 2 variables

Eliminating  $\mu$  or  $\sigma$ 
Correct final answer

 $340.\ 9709_s16_ms_61\ Q: 1$ 

Question	Answer		Ma	rks	1	Guidance
1	$z = 1.037$ $1.037 = \frac{1.8 - 1.62}{\sigma}$	G	B1 M1		must hav	g to 1.04 lising attempt allow cc no sq rt /e a z-value i.e. not 0.8023 or
	$\sigma = 0.18/1.037 = 0.174$	20	<b>A1</b>	[3]	0.5596.	

341. 9709_s16_ms_61 Q: 5

5	(i)	$P(x < 3.0) = P\left(z < \frac{3.0 - 2.6}{0.25}\right) + P(z < 1.6) = 0.945$	M1 M1 A1	[3]	Standardising no sq rt no cc Correct area i.e. prob > 0.5 legit
	(ii) 🕶	$X \sim B(500, 0.9452) \sim N(472.6, 25.898)$ $P\left(z > \frac{479.5 - 472.6}{\sqrt{25.89848}}\right) = P(z > 1.3558)$ $= 1 - 0.9125 = 0.0875$	M1 M1 M1 M1 A1	[5]	500 ×'0.9452' and 500×'0.9452'×('1 – 0.9452') seen oe Standardising must have sq rt. All M marks indep cc either 479.5 or 480.5 seen correct area i.e. < 0.5

Question	Answer	Marks	Guidance
(iii)	500× 0.9452 and 500× (1–0.9452) are both > 5	<b>B1</b> √[1]	must see at least $500 \times 0.0548 > 50e$ ft their (i) accept $np > 5$ , $nq > 5$ if both not $npq > 5$





 $342.\ 9709_s16_ms_62\ Q:\ 2$ 

2 (i	(i)	0.72	<b>B1</b> [1]	
(1	(ii)	$np = 180 \times 0.72, npq = 180 \times 0.72 \times 0.28$ $X \sim N(129.6, 36.288)$ $P(x > 115) = P\left(z > \frac{115.5 - 129.6}{\sqrt{36.288}}\right)$ $= P(z > -2.341)$	B1√ M1 M1 M1	$180 \times 0.72$ , $180 \times 0.72 \times 0.28$ seen, their values or correct Standardising ( $\pm$ ) must have sq rt cc either 115.5 or 114.5 seen Correct area, $\Phi$ from final answer attempt fully correct method
		= 0.990	<b>A1</b> [5]	

 $343.\ 9709_s16_ms_62\ Q:\ 6$ 

(i) 
$$P(x > 10.2) = P\left(z > \frac{10.2 - 9.5}{1.3}\right)$$
 M1 Standardising allow cc, sq rt, sq  $1 - \Phi$  final solution attempt  $1 - \Phi$ 

344. 9709_s16_ms_63 Q: 5

(i)	z = 1.015	B1		Accept z between $\pm 1.01$ and $1.02$
	$1.015 = \frac{70 - 69}{\sigma}$	M1		Standardising
	$\sigma = 0.985 (200/203)$	A1	[3]	
(ii)	58 + 9 = 67	M1		58 + 9 seen or implied (or 69-58 or 69-9)
•	$58 + 9 = 67$ $P(>67) = P\left(z > \frac{67 - 69}{0.9852}\right)$	M1		Standardising $\pm z$ no cc allow their sd (must be $\pm ve$ )
				Alt. 1 69-58 =11, P(>9)=P $\left(z > \frac{9-11}{0.9852}\right)$
				Alt.2 69-9 =60, P(>58) =P $\left(z > \frac{58-60}{0.9852}\right)$
	= P(z > -2.03) = 0.9788	M1		Correct prob area
	300 × 0.9788	M1		Multiply their prob (from use of tables) by 300
	= 293.6 so 293	A1	[5]	- accept 293 or 294 from fully correct working





345. 9709_s16_ms_63 Q: 7

(i)	$\begin{bmatrix} ^{12}C_{8} (\ 0.65)^{8} (0.35)^{4} + ^{12}C_{9} (0.65)^{9} (0.35)^{3} + ^{12}C_{10} \\ (0.65)^{10} (0.35)^{2} \end{bmatrix}$	M1 M1		Bin term with ${}^{12}C_r p^r (1-p)^{12-r}$ seen $r\neq 0$ any $p<1$ Summing 2 or 3 bin probs $p=0.65$ or
	= 0.541	A1	[3]	0.35, $n = 12$
(ii)	$P(\overline{R}\overline{R}RR) = 0.35 \times 0.35 \times 0.35 \times 0.65$	M1		Mult 4 probs either $(0.35)^3(0.65)$ or
	= 0.0279	A1	[2]	$(0.65)^3(0.35)$
(iii)	P(7) = 0.2039  (unsimplified)	B1		$^{12}\text{C}_{7} (0.65)^{7} (0.35)^{5}$
	Mean = 250×'0.2039' (= 50.9798) Var = 250×'0.2039' × '(1 – 0.2039)' (= 40.5851)	В1		Correct unsimplified np and npq using 'their 0.2039' but not 0.65 or 0.35
	$P(>54) = P\left(\frac{54.5 - 50.9798}{\sqrt{40.5851}}\right)$	M1		Standardising need sq rt – must be from
	= P(z > 0.5526)	M1		working with 54 cc either 53.5 or 54.5
	$= 1 - \Phi(0.5526) = 1 - 0.7098$	M1		correct area $< 0.5$ i.e. $1 - \Phi$ - must be
	= 0.290	A1	[6]	from working with 54

346. 9709_w16_ms_61 Q: 4

4 (i)	$P(<1) = P\left(z < \frac{1 - 1.04}{0.017}\right) = P(z < -2.353)$ $= 1 - 0.9907$ $= 0.0093$	M1 M1 A1	[3]	Standardising no cc, no $$ or sq $1 - \Phi$ (final process)
(ii)	expected number $1000 \div 1.04 = 961$ or $962$	B1	[1]	Or anything in between
(iii)	$z = -1.765$ $-1.765 = \frac{1 - \mu}{0.017}$ $= 1.03$	B1 M1 A1	[3]	$\pm$ 1.76 to 1.77 Standardising must have a z-value, allow $$ or sq
(iv)	expected number = $1000 \div 1.03 = 971 \text{ or } 970$	B1√^	[1]	Or anything in between, ft their (iii)

347. 9709_w16_ms_62 Q: 3

(i)	Bin (7, 0.8) P(6, 7) = ${}^{7}C_{6} (0.8)^{6} (0.2)^{1} + (0.8)^{7}$ = 0.577	M1 M1 A1	[3]	$^{7}C_{n}$ p ⁿ $(1-p)^{7-n}$ seen Correct unsimplified expression for P(6,7)
(ii)	mean = $100 \times 0.2 = 20$ Var = $100 \times 0.2 \times 0.8 = 16$ P(at most 30) = $P\left(z < \frac{30.5 - 20}{\sqrt{16}}\right)$	M1 M1 M1 M1		Correct unsimplified mean and var $Standardising \ must \ have \ sq \ rt, \ their \ \mu, \ variance \\ cc \ either \ 29.5 \ or \ 30.5 \\ Correct \ area \ \Phi \ , \ from \ final \ process$
	= P(z < 2.625) = 0.996	A1	[5]	





 $348.\ 9709_w16_ms_62\ Q:\ 4$ 

4	(i)	$P(< 4.5) = P\left(z < \frac{4.5 - 4.2}{0.6}\right) = P(z < 0.5)$	M1		Standardising once no cc no sq no sq rt
		$= 0.6915$ $P(< 3.5) = P\left(z < \frac{3.5 - 4.2}{0.6}\right) = P(z < -1.167)$			
		= 1 - 0.8784 = 0.1216	M1		$\Phi_1 - (1 - \Phi_2) [P_1 - P_2, 1 > P_1 > 0.5, 0.5 > P_2 > 0]$ oe
		0.6915 - 0.1216 = 0.570	A1	[3]	

(ii)	$z = 1.175$ $1.175 = \frac{t - 4.2}{0.6}$	B1 M1		$\pm 1.17$ to 1.18 seen Standardising no cc, allow sq, sq rt with z – value (not $\pm 0.8106$ , 0.5478, 0.4522, 0.1894, 0.175 etc.)
	t = 4.91	A1	[3]	Correct answer from $z = 1.175$ seen (4sf)
(iii)	$(0.88)^{\rm n} < 0.003$	M1		Inequality or eqn in 0.88, power correctly placed using $n$ or $(n\pm 1)$ , 0.003 or $(1-0.003)$ oe
	$n > \lg (0.003)/\lg (0.88)$ n > 45.4	M1		Attempt to solve by logs or trial and error (may be implied by answer)
	n = 46	A1	[3]	Correct integer answer

 $349.\ 9709_w16_ms_63\ Q:6$ 

(i)	$P(\text{small}) = P\left(z < \frac{95 - 150}{50}\right)$	M1		± standardising using 95, no cc, no sq, no sq rt
	= P(z < -1.1) $= 1 - 0.8643$ $= 0.136$	M1 A1	[3]	1 - Φ ( in final answer)
(ii)	z = 1.282	B1		± rounding to 1.28
	$1.282 = \frac{x - 150}{50}$	M1		Standardised eqn in their z allow cc
	x = 214  g	A1	[3]	
(iii)	$P(\text{small}) = 0.1357, \ P(\text{large}) = 0.1357 \text{ symmetry}$ $P(\text{medium}) = 1 - 0.1357 \times 2 = 0.7286 \text{ AG}$	B1	[1]	Correct answer legit obtained
(b)	Expected cost per banana = 0.1357×10 +	*M1		Attempt at multiplying each 'prob' by a price
	0.1357×25 + 0.7286×20 = 19.3215 cents Total cost of 100 bananas = 1930 (cents) (\$19.30)	DM1 A1	[3]	and summing Mult by 100





 $350.\ 9709_w16_ms_63\ Q\hbox{:}\ 7$ 

(i)	$P(2) = {}^{7}C_{2}(0.1)^{2}(0.9)^{5}$ = 0.124	M1 A1	[2]	Bin term ${}^{7}\text{C}_{2}p^{2}(1-p)^{5}$ $0$
(ii)	$(0.15)^{1}(0.1)^{2}(0.75)^{2} \times 5!/2!2!$	M1		Mult probs for options, $(0.15)^a(0.1)^b(0.75)^c$ where $a + b + c$ sum to 5
	= 0.0253 or 81/3200	M1 A1	[3]	Mult by 5!/2!2! oe
(iii)	mean = 365×0.15 (= 54.75 or 219/4) Var = 365× 0.15×0.85 (= 46.5375 or 3723/80)	B1		Correct unsimplified mean and var, oe
	$P(x > 44) = P\left(z > \frac{44.5 - 54.75}{\sqrt{46.5375}}\right)$ $= P(z > -1.5025)$	M1 M1 M1		± Standardising need sq rt cc either 44.5 (or 43.5)
	= 0.933	A1	[5]	Correct answer accept 0.934

 $351. 9709_s15_ms_61 Q: 1$ 

P(x < 3.273) = 0.5 - 0.475 = 0.025	M1	Attempt to find z-value using tables in reverse
z = -1.96	A1	±1.96 seen
$\frac{3.2 - \mu}{0.714} = -1.96$	M1	Solving their standardised equation <i>z</i> -value not nec
$\mu = 4.60$ s	A1 [4]	Correct ans accept 4.6

 $352.\ 9709_s15_ms_61\ Q:\ 6$ 

(i)	$P(5, 6, 7) = {}^{8}C_{5}(0.68)^{5}(0.32)^{3} + {}^{8}C_{6}(0.68)^{6}(0.32)^{2} + {}^{8}C_{7}(0.68)^{7}(0.32)$ $= 0.722$	M1 M1 A1 A1 [4]	Binomial term ${}^{8}C_{x} p^{x} (1-p)^{8-x}$ seen $0Summing 3 binomial termsCorrect unsimplified answerCorrect answer$
(ii)	$np = 340, npq = 108.8$ $P(x > 337) = P\left(z > \frac{337.5 - 340}{\sqrt{108.8}}\right)$ $= P(z > -0.2396)$ $= 0.595$	B1  M1  M1  M1  A1 [5]	Correct (unsimplified) mean and var standardising with sq rt must have used 500 cc either 337.5 or 336.5 correct area (> 0.5) must have used 500 correct answer
(iii)	np(340) > 5 and $nq(160) > 5$	B1 [1]	must have both or at least the smaller, need numerical justification





 $353.\ 9709_s15_ms_62\ Q\hbox{:}\ 7$ 

	total = 1210	A1		Correct final answer
(a) (i)	prob = $p\left(z < \frac{30 - 35.2}{4.7}\right)$ = $P(z < -1.106)$ = $1 - 0.8655 = 0.1345$ $0.1345 \times 52 = 6.99$	M1 M1 A1 A1	4	Standardising no sq rt no cc no sq $1-\Phi$ Correct ans rounding to 0.13 Correct final answer accept 6 or 7 if 6.99 not seen but previous prob 0,1345 correct
(ii)	$\Phi(t) = 0.648 \qquad z = 0.380$ $0.380 = \frac{t - 35.2}{4.7}$ $t = 37.0$	B1 M1	3	0.648 seen standardising allow cc, sq rt,sq, need use of tables not 0.148, 0.648, 0.352, 0.852 correct answer rounding to 37.0
(b)	$\frac{7 - \mu = -0.8\sigma}{\sigma}  \text{so}  7 - \mu = -0.8\sigma$ $\frac{10 - \mu}{\sigma} = 0.44  \text{so}  10 - \mu = 0.44\sigma$ $\mu = 8.94 \qquad \sigma = 2.42$	B1 B1 M1 M1	5	$\pm$ 0.8 seen $\pm$ 0.44 seen An eqn with z-value, $\mu$ and $\sigma$ no sq rt no cc no sq Sensible attempt to eliminate $\mu$ or $\sigma$ by subst or subtraction, need at least one value Correct answers

 $354.\ 9709_s15_ms_63\ Q:\ 1$ 

z = 1.136		В1		$\pm$ 1.136 seen, not $\pm$ 1.14,
$1.136 = \frac{195 - \mu}{22}$		M1		Standardising, no cc no sq rt, equated to their z not 0.128 or 0.872
$\mu = 170$	0	A1	[3]	Correct answer, nfww

 $355.\ 9709_s15_ms_63\ Q:\ 3$ 

$\mu = 300 \times 0.072 = 21.6$ , $\sigma^2 = 20.0448$	B1	300×0.072 seen and
		300×0.072×0.928 seen or implied
$P(r < 18) = P(z < \frac{17.5 - 21.6}{})$		$(\sigma = 4.4771, \sigma^2 = 20(.0))$ oe
$P(x < 18) = P\left(z < \frac{17.5}{\sqrt{20.0448}}\right)$	M1	±Standardising, their mean/var, with
( \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\		sq root
	M1	Cont corr 17.5 or 18.5
=P(z<-0.9157)		
= 1 - 0.8201	M1	Correct area 1 - Φ
= 0.180	A1 <b>[5]</b>	Answer wrt 0.180, nfww
		·





 $356.\ 9709_s15_ms_63\ Q:\ 5$ 

(i)	P(large) = 1 - $\Phi$ $\left(\frac{29 - 21.7}{6.5}\right)$ = 1 - $\Phi$ (1.123) = 1 - 0.8692 = 0.1308 P(0,1) = $(0.8692)^{8} + {}^{8}C_{1}(0.1308)(0.8692)^{7}$ = 0.718	M1 M1 A1 M1 M1	[6]	Standardising no cc no sq rt Correct area $1 - \Phi$ Rounding to 0.13  Any bin term with ${}^{8}C_{x}p^{x}(1-p)^{8-x}$ 0 $ Summing bin P(0) + P(1) only with n = 8, oe Correct ans$
(ii)	$= 1 - (0.8692)^n > 0.98$ $(0.8692)^n < 0.02$ Least number = 28	M1 M1 A1	[3]	eq/ineq involving their (0.8692) ⁿ or (0.1308) ⁿ , 0.02 or 0.98 oe with or without a 1 solving attempt (could be trial and error) – may be implied by their answer correct answer

357. 9709_w15_ms_61 Q: 2

$\mu = 54.1$ $z = -1.11$	B1 Stated or evaluated B1 Accept rounding to ± 1.1	
$-1.11 = \frac{50.9 - 54.1}{\sigma}$	M1 Standardising no cc no sq rt	
$\sigma$ = 2.88	A1 [4] Correct answer	

358. 9709_w15_ms_61 Q: 4

(i)	$\overline{x} = 80 - 147/30 = 80 - 4.9$ = 75.1	M1 A1	For –147/30 oe seen Correct answer
	$sd = \sqrt{\frac{952}{30} - \left(\frac{147}{30}\right)^2} = \sqrt{7.72}$	M1	$952/30 - (\pm \text{ their coded mean})^2$
	sd = 2.78	<b>A1</b> [4]	Correct answer
(ii)	$P(x > 160) = P\left(z > \frac{160 - 148.6}{18.5}\right)$	M1	Standardising no cc no sq rt
	= P(z > 0.616) $= 1 - 0.7310$	M1	1 – Ф
	= 0.269	<b>A1</b> [3]	Correct answer





359. 9709_w15_ms_61 Q: 7

(i)	let P(2, 4, 6) all = $p$ then P(1, 3, 5) all = 2p 3p + 6p = 1 p = 1/9 so prob (3) = $2/9$ (0.222)	M1 M1 A1	[3]	Using P(even) = 2P(odd) or vice versa oe Summing P(odd+ even) or P(1, 2, 3, 4, 5, 6) = 1 Correct answer
(ii)	$P(5, 5, 6) = 2/9 \times 2/9 \times 1/9 \times {}^{3}C_{2}$ $= 4/243 (0.0165)$	M1 M1 A1	[3]	Mult three probs together Mult by 3 oe ie summing 3 options Correct answer
(iii)	$\mu = 100 \times 1/3 = 33.3, \ \sigma = 100 \times 1/3 \times 2/3 = 22.2$ $P(x \le 37) = P\left(z \le \frac{37.5 - \frac{100}{3}}{\sqrt{\frac{200}{9}}}\right) = P(z \le 0.8839)$ $= 0.812$	B1 M1 M1 M1	[5]	Unsimplified 100/3 and 200/9 seen  Standardising need sq rt 36.5 or 37.5 seen correct area using their mean  Correct answer

 $360.\ 9709_w15_ms_62\ Q\hbox{:}\ 7$ 

(a) (i)	$P(x > 3900) = P\left(z > \frac{3900 - 4520}{560}\right)$	M1	V	Standardising no cc no sq rt no sq
	$= P(z > -1.107) = \Phi(1.107)$ = 0.8657	M1		Correct area $\Phi$ ie $> 0.5$
	Number of days = $365 \times 0.0.8657$	A1 B1√	4	Prob rounding to 0.866
	= 315 or 316 (315.98)	В1∨	4	Correct answer ft their wrong prob if previous A0, $p < 1$ , ft must be accurate to 3sf
(ii)		B1		± 1.165 seen
	$1.165 = \frac{8000 - m}{560}$	M1		Standardising eqn allow sq, sq rt, cc, must have z-value eg not 0.122, 0.878, 0.549, 0.810.
	$m = 7350 \ (7347.6)$	A1	3	Correct answer rounding to 7350
(iii)	$P(0, 1) = (0.878)^{6} + {}^{6}C_{1}(0.122)^{1}(0.878)^{5}$ $= 0.840 \text{ accept } 0.84$ Normal approx. to Binomial. M0, M0, A0	M1 M1 A1	3	Binomial term ${}^{6}C_{x} p^{x} (1-p)^{6-x}$ $0  seenCorrect unsimplified expressionCorrect answer$
(b)	$P(< 2\mu) = P\left(z > \frac{2\mu - \mu}{\sigma}\right) = P(z < 1.5)$	M1 M1		Standardising with $\mu$ and $\sigma$ Attempt at one variable and cancel
	= 0.933	A1	3	Correct answer

361. 9709_w15_ms_63 Q: 4

(i)	z = 1.127	B1	$\pm$ 1.127 seen accept rounding to $\pm$ 1.13
	$1.127 = \frac{136 - 125}{\sigma}$	M1	Standardising no cc no sq rt, with attempt at z
	$\sigma$ = 9.76	<b>A1</b> 3	(not $\pm 0.8078$ , $\pm 0.5517$ , $\pm 0.13$ , $\pm 0.87$ ) Correct ans





(ii)	$P(131 < x < 141) = P\left(\frac{131 - 125}{9.76} < z < \frac{141 - 125}{9.76}\right)$	M1		Standardising once with their sd, no $\sqrt{,^2}$ , allow cc
	$= \Phi(1.639) - \Phi(0.6147)$ = 0.9493 - 0.7307	M1		Correct area Φ2 – Φ1
	= 0.9493 - 0.7307 $= 0.2186$	M1		Mult by 170, P<1
	Number = $0.2186 \times 170 = 37$ or 38 or awrt 37.2	A1	4	Correct answer, nfww

362.  $9709_{\text{w}15}_{\text{ms}}63$  Q: 7

(i)	$P(0, 1, 2) = (0.92)^{19} + {}^{19}C_1(0.08)(0.92)^{18} + {}^{19}C_2(0.08)^2(0.92)^{17}$	M1 M1		Binomial term ${}^{19}C_x p^x (1-p)^{19-x}$ seen $0Correct unsimplified expression$
	= 0.809	A1	3	Correct answer (no working SC B2)
(ii)	P(at least 1) = 1 - P(0) = 1 - P(0.92) ⁿ > 0.90 0.1 > (0.92) ⁿ n > 27.6	M1 M1		Eqn with their 0.92", 0.9 or 0.1, 1 not nec Solving attempt by logs or trial and error, power eqn with one unknown power
	Ans 28	A1	3	Correct answer, not approx., $\approx$ , $\geqslant$ , $>$ , $\leqslant$ , $<$
(iii)	$np = 1800 \times 0.08 = 144$ $npq = 132.48$	B1		correct unsimplified np and npq seen accept 132.5, 132, 11.5, awrt 11.51
	P( at least 152) = P $\left(z > \left(\frac{151.5 - 144}{\sqrt{132.48}}\right)\right)$	M1 M1	6	standardising, with $$ cont correction 151.5 or 152.5 seen
	= P(z > 0.6516) $= 1 - 0.7429$	M1	7	correct area $1 - \Phi$ (probability)
	= 0.257	A1	5	correct answer
(iv)	Use because $1800 \times 0.08$ (and $1800 \times 0.92$ are both) $> 5$	B1	1	$1800 \times 0.08 > 5$ is sufficient $np>5$ is sufficient if clearly evaluated in (iii)
				If <i>npq</i> >5 stated then award B0

